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The problem of automatic damage detection in civil structures is complex and requires a
system that can interpret collected sensor data into meaningful information. We apply
our recently developed switching Bayesian model for dependency analysis to the problems
of damage detection and classification. The model relies on a state-space approach that
accounts for noisy measurement processes and missing data, which also infers the statis-
tical temporal dependency between measurement locations signifying the potential flow of
information within the structure. A Gibbs sampling algorithm is used to simultaneously
infer the latent states, parameters of the state dynamics, the dependence graph, and any
changes in behavior. By employing a fully Bayesian approach, we are able to characterize
uncertainty in these variables via their posterior distribution and provide probabilistic esti-
mates of the occurrence of damage or a specific damage scenario. We also implement a sin-
gle class classification method which is more realistic for most real world situations where
training data for a damaged structure is not available. We demonstrate the methodology
with experimental test data from a laboratory model structure and accelerometer data
from a real world structure during different environmental and excitation conditions.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Structural inspection has been necessary to ensure the integrity of infrastructure for almost as long as structures have
existed, ranging from informal subjective methods such as visual or hammer testing, to quantitative modern methods
including ultrasound, X-ray, and radar non-destructive testing techniques. These testing methods are relatively intensive
as they depend on the experience of the inspector and the time to inspect suspected damaged locations in the structure.
Inspections are typically carried out periodically, however if additional sensors were added to the structure they might pro-
vide an extra indication of where and when potential damage occurs, reducing the time and effort necessary for structural
inspection.

Structural health monitoring (SHM) involves instrumenting a structure with sensors and deriving some information from
the data they collect in order to determine if the structure has changed [1]. This change in the structure could then be attrib-
uted to some sort of damage that would be more closely investigated. In general, data is processed into features that may
indicate these changes in the structure and in some cases statistical discrimination of these features are used to separate
data collected from intact and changed structures [2]. Statistical or similar methods are essential for being able to discrim-
inate feature changes as a result of structural changes from measurement or environmental variability.
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Bayesian inference is a probabilistic method of inference that allows one to form probabilistic estimates of certain param-
eters given a series of observations. The method can be used in a couple of different ways in SHM including model updating
of structural parameters [3], monitoring by inferring structural parameters over time [4], and determining the optimal place-
ment of sensors [5]. Bayesian inference can be used in either a model-based situation where a structural model is either for-
mulated or updated as a basis for damage detection, a data-based situation where there is no prior information on the
structural model and only the sensor data is used, or a mixture of the two situations.

We apply a recently developed framework for Bayesian switching dependence analysis under uncertainty [6] to time-
series data obtained from accelerometers located at multiple positions on a building for the purposes of structural damage
detection and classification. This model is effectively a computational representation of not only the physical structural sys-
tem, but also the act of collecting information on that system through the use of sensors. By accounting for interactions
between sensor signals collected from the system in different locations, the hope is to infer a representation of the structural
connections between locations in the structure or the underlying physics without having any knowledge of the actual struc-
tural configuration or dynamics. Assuming that the model learned from a set of data is exclusive to the corresponding phys-
ical structural configuration and condition, a change in the model parameters could be indicative of a change in the
measured physical structure which might be caused by damage.

In order to see if these assumptions might hold true, we test the methodology on data from a laboratory model structure
in various intact and damaged conditions, as well as on data from a real building under ambient and non-ambient conditions,
such as during a fireworks show and a small earthquake. These data consist of short sequences of measurements, such that it
is unlikely that changes occur within a single sequence. The problem of damage detection can then be cast as a problem of
time-series classification. If prior data from possible damage scenarios is available, then this problem is a standard multi-
class classification problem. However, in most real scenarios, only data from an intact structure is available a priori. Then,
the problem of damage detection can be seen as a single-class classification problem which we also implement. The primary
contribution of this paper in extending the work of Dzunic et al. [6] is the application of the methodology as a structural
health monitoring algorithm for damage detection. Building on the work presented in [7] involving multi-class classification,
this paper also considers single-class classification as well as the inferred graphical model of a system. Additionally, another
goal is to see if the inferred graphical model of the system may represent any physical characteristics of an instrumented
structure.

In Theory (Section 2), we first provide background on Bayesian inference and graphical models in Section 2.1, then we
describe the switching state-space interaction model of Dzunic et al. [6] in Section 2.2, and finally we develop extensions
of this model for time-series classification in Section 2.3 and single-class classification in Section 2.4. We describe the exper-
imental setup of a laboratory model structure and the Massachusetts Institute of Technology’s Green building in Section 3.
We present three sets of results in Section 4. The results of the interaction analysis, given in Section 4.1, indicate that inferred
structures correlate significantly with actual physical structures and prior knowledge. Multi-class classification results, pre-
sented in Section 4.2, demonstrate that the classification model can classify time-series obtained under intact and different
damage scenarios with high accuracy. Finally, single-class classification results, presented in Section 4.3, demonstrate that
the single-class classification model detects with high accuracy time-series obtained under conditions that differ form intact
or ambient conditions and that it also predicts the ‘‘strength of deviation”. We finish with conclusions in Section 5.
2. Theory

In this section, we first provide relevant background on graphical models and Bayesian inference in Section 2.1. Then, we
describe the state-space switching interaction model (SSIM) of [6] in Section 2.2 and its modifications for the applications to
time-series classification in Section 2.3 and single-class classification in Section 2.4.

2.1. Background

The relevant background for this paper includes probabilistic graphical models (Bayesian networks and dynamic Bayesian
networks in particular) and principles of Bayesian inference. An introduction to the Bayesian approach and Bayesian net-
works can be found in [8]. An introduction to dynamic Bayesian networks can be found in [9].

2.1.1. Graphical models
Graphical models are a language that uses graphs to compactly represent families of joint probability distributions among

multiple variables that respect certain constraints dictated by a graph. There are two common types: undirected graphical
models (also called Markov random fields) and directed graphical models (Bayesian networks), which use undirected and
acyclic directed graphs, respectively, to form such constraints. In both cases, nodes of a graph correspond to the variables
which joint distribution is modeled. In an undirected graphical model, a joint probability distribution is assumed to be pro-
portional to a product of nonnegative functions (called potentials) over graph cliques (fully connected subgraphs). In a Baye-
sian network, a distribution is assumed to be a product of conditional distributions of each variable given its parents in the
graph. Examples of both types of graphical models are shown in Fig. 1. In this paper, we use Bayesian networks and their
variant, dynamic Bayesian networks. We now describe them in more detail.



Fig. 1. (a) Undirected graphical model example: PðA;B;C;D; EÞ / f 1ðA;BÞf 2ðA;CÞf 3ðB;DÞf 4ðC;DÞf 5ðB;D; EÞ. (b) Directed graphical model example:
PðA;B;C;D; EÞ ¼ PðAÞPðBjAÞPðCÞPðDjA;B;CÞPðEjB;DÞ.
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Bayesian networks. A Bayesian network (BN) consists of a directed acyclic graph G ¼ ðV ; EÞ, whose nodes X1;X2; . . . ;XN rep-
resent random variables, and a set of conditional distributions pðXijpaðXiÞÞ; i ¼ 1; . . . ;N, where paðXiÞ is a set of variables that
correspond to the parent nodes (parents) of node Xi. A Bayesian network encodes the following joint probability distribution
among variables X1;X2; . . . ;XN:
pðX1;X2; . . . ;XNÞ ¼
YN
i¼1

pðXijpaðXiÞÞ:
Conditional distributions pðXijpaðXiÞÞ are typically assumed to have some parametric form pðXijpaðXiÞ; hiÞ, in which case
learning a Bayesian network means learning parameters hi. If, in addition, graph G is unknown, the inference of this graph
is commonly referred to as learning the structure of a Bayesian network.

Fig. 2 shows two additional examples of Bayesian networks. In Fig. 2a, D1;D2; . . . ;DN are discrete random variables with
values from f1;2; . . . ;Kg that are drawn independently from a multinomial distribution with parameters p ¼ ðp1;p2; . . . ;pKÞ,
ðpi P 0;

PK
i¼1pi ¼ 1Þ, while p itself is a random vector drawn from a Dirichlet distribution with parameters

a ¼ ða1;a2; . . . :aKÞ. Then, the overall joint distribution can be written as pðp;D1;D2; . . . ;DN;aÞ ¼ pðp;aÞ QN
i¼1pðDi jpÞ ¼

Dirichletðp;aÞQN
i¼1MultðDi;pÞ. Note that if constant parameters are shown in a graphical model diagram (a in this case), they

are written inside a square (as here) or simply without an associated graphical symbol. In Fig. 2b, X1;X2; . . . ;XN are jointly
Gaussian univariate random variables with an additional constraint that, for each i; Xi is independent of X1; . . . ;Xi�2 when
conditioned on Xi�1 (first order Markov assumption): PðX1;X2; . . . ;XNÞ ¼ PðX1Þ

QN
i¼2PðXijXi�1Þ ¼ N ðX1;l1;r2

1Þ
QN

i¼2N
ðXi; aiXi�1;r2

i Þ. Note that this model requires only 2N parameters, compared to N þ N2 required for a general multivariate
Gaussian model.

Dynamic Bayesian networks. Dynamic Bayesian networks (DBNs) are Bayesian networks that model sequential data, such
as time-series. Each signal in a model is represented with a sequence of random variables that correspond to its value at dif-
ferent indices, or discrete time points. We will refer to such index as time, although it may not be time-related in general (for
example, it can be an index into a genome sequence or a word in a sentence). Edges are allowed only from a variable with a

lower index to a variable with a higher index (i.e., they must ‘‘point” forward in time). Let Xi
t denote a random variable that

takes the value of signal i at time t. Then, if there is an edge from Xi
t1
to Xi

t2
; t2 > t1 must hold. Furthermore, edges are often

restricted to connect variables at neighboring time points, i.e., they are of the form Xi
t ! X j

tþ1. This assumption results in a
first-order Markov model over time – signal values at time t are independent of the past given their values at time t � 1. Let
paði; tÞ be the set of parents of signal i at time t. Then, the associated conditional probability distributions are of the form

pðXi
t jXpaði;tÞ

t�1 Þ, where Xpaði;tÞ
t�1 denotes a collection of variables fXvt�1; v 2 paði; tÞg. In homogenous DBNs, edges (equivalently, par-

ent sets) and conditional distributions are assumed time-invariant. On the other hand, in time-varying DBNs both edges and
conditional distributions may vary over time. Fig. 3 shows an example of a time-varying DBN which is piecewise homoge-
nous (switching).

2.1.2. Bayesian inference
In contrast to the classical (or frequentist) approach, in which parameters of a statistical model are assumed fixed, but

unknown, in the Bayesian approach, parameters are assumed to be drawn from some distribution (called prior distribution
Fig. 2. Two examples of Bayesian networks.



Fig. 3. Dynamic Bayesian Network (DBN) representation of switching interaction among four signals. They initially evolve according to interaction graph E1.
At time point 4, the interaction pattern changes, and they evolve according to interaction graph E2. Self-edges are assumed.
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or simply prior) and therefore treated as random variables. Let pðXjhÞ be a probabilistic model of a phenomenon captured by
a collection of variables X, with parameters h, and let pðh; cÞ be the prior distribution of model parameters h, parametrized by
c, which are typically called hyperparameters. The prior distribution is often assumed to be known, in which case hyperpa-
rameters are treated as constants and are chosen in advance to reflect the prior belief in the parameters h (e.g., by a domain
expert).

The central computation in Bayesian inference is computing the posterior distribution of parameters h given data samples

D ¼ feX1; eX2; . . . ; eXNg, namely, pðh jD; cÞ. If the samples are independent, the data likelihood is pðDjhÞ ¼QN
i¼1pðX ¼ eXi jhÞ. The

posterior distribution can be computed using the Bayes rule:
pðh jD; cÞ ¼ pðh; cÞpðDjhÞ
pðD; cÞ ¼ pðh; cÞpðDjhÞR

h pðh; cÞpðDjhÞdh : ð1Þ
Note that the denominator pðD; cÞ, the marginal likelihood of data, does not depend on the parameters h, which are
‘‘marginalized out”. Therefore, the posterior distribution is proportional to the numerator:
pðh jD; cÞ / pðh; cÞpðDjhÞ; ð2Þ

while the denominator is simply a normalization constant.

Evaluating the numerator above for a specific value of parameters is easy, as it is the product of the prior distribution and
the data likelihood terms, which are specified by the model. However, computing the full posterior distribution pðh jD; cÞ, or
even evaluating it for a specific parameters value (which requires computing the marginal likelihood pðD; cÞ), is in general
difficult, as the posterior distribution and the marginal likelihood may not have closed-form analytical expressions. Nonethe-
less, when the prior distribution, pðh; cÞ, is chosen to be a so-called conjugate distribution to the data likelihood distribution,
pðDjhÞ, the posterior distribution has the same form as the prior, and, in general, differs from the prior in the value of the
hyperparameters, i.e., pðh jD; cÞ ¼ pðh; c0Þ, where c0 is some function of prior hyperparameters, c, and the data, D. In this case,
computing c0 is commonly referred to as ‘‘updating” the prior with the data. Not all distributions have a conjugate prior.
However, all distributions from the so-called exponential family, which includes a majority of the well-known distributions,
have a conjugate prior, and are therefore a convenient choice. Otherwise, simulation (sampling) or some other approximate
methods must be employed to represent the posterior.

2.2. State-Space Switching Interaction Model (SSIM)

We assume that N multivariate signals evolve according to a Markov process over discrete time points t ¼ 0;1; . . . ; T . The
value of signal i at time point t > 0 depends on the value of a subset of signals paði; tÞ at time point t � 1. We refer to paði; tÞ as
a parent set of signal i at time point t. While the preceding implies a first-order Markov process, the approach extends to
higher-ordered Markov processes. A collection of directed edges Et ¼ fðv; iÞ; i ¼ 1; . . . ;N; v 2 paði; tÞg forms a dependence
structure (or so-called interaction graph) at time point t; Gt ¼ ðV ; EtÞ, where V ¼ f1; . . . ;Ng is the set of all signals. That is,
there is an edge from j to i in Gt if and only if signal i at time point t depends on signal j at time point t � 1.

Let Xi
t denote a (multivariate) random variable that describes the latent state associated to signal i at time point t. Then,

signal i depends on its parents at time t according to a probabilistic model pðXi
t jXpaði;tÞ

t�1 ; hitÞ parametrized by hit , where Xpaði;tÞ
t�1

denotes a collection of variables fXvt�1; v 2 paði; tÞg. Furthermore, we assume that conditioned on their parents at the previ-
ous time point, signals are independent of each other:
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pðXt jXt�1; Et; htÞ ¼
YN
i¼1

pðXi
t jXpaði;tÞ

t�1 ; hitÞ; ð3Þ
where Xt ¼ fXi
tg

N

i¼1 (i.e., Xt is a collection of variables of all signals at time point t) and ht ¼ fhitg
N

i¼1. Structure Et and param-
eters ht determine a dependence model at time t;Mt ¼ ðEt ; htÞ. Finally, we express a joint probability of all variables at all
time points, X, as
pðXÞ ¼ pðX0jh0Þ
YT
t¼1

pðXtjXt�1; Et ; htÞ ¼
YN
i¼1

pðXi
0jhi0Þ

YT
t¼1

YN
i¼1

pðXi
t jXpaði;tÞ

t�1 ; hitÞ: ð4Þ
The stochastic process of Eq. (4) can be represented using a dynamic Bayesian network (DBN), such that there is a one-to-one
correspondence between the network and the collection of interaction graphs over time, as shown in Fig. 3.

In order to learn time-varying interaction from time-series data, we assume that the dependence model switches over

time between K distinct models, ~Mk ¼ ðeEk; ~hkÞ; k ¼ 1; . . . ;K. More formally, for each time point t;Mt ¼ ~Mk for some
k;1 6 k 6 K . One interaction may be active for some period of time, followed by a different interaction over another period
of time, and so on, switching between a pool of possible interactions. This is illustrated in Fig. 3. Let Zt ;1 6 t 6 T , be a discrete
random variable that represents an index of a dependence model active at time point t; i.e., Mt ¼ ~MZt ; Zt 2 f1; . . . ;Kg. We
can now rewrite the transition model (Eq. (3)) as
pðXt jXt�1; Zt ; eE; ~hÞ ¼ pðXt jXt�1; eEZt ;
~hZt Þ ¼

YN
i¼1

pðXi
t jX

~paði;ZtÞ
t�1 ; ~hiZt Þ; ð5Þ
where ðeE; ~hÞ ¼ fðeEk; ~hkÞg
K

k¼1 is a collection of all Kmodels and ~paði; kÞ is a parent set of signal i in eEk. We can also rewrite Eq. (4)

as pðXjZ; eE; ~hÞ ¼ pðX0jh0Þ
QT

t¼1pðXt jXt�1; Zt; eE; ~hÞ, where Z ¼ fZtgTt¼1. To distinguish from signal state, we call Zt a switching state
(at time t) and Z a switching sequence. Furthermore, we assume that Z forms a first order Markov chain:
pðZÞ ¼ pðZ1Þ
YT
t¼2

pðZt jZt�1Þ ¼ pZ1

YT
t¼2

pZt�1 ;Zt ; ð6Þ
where pi;j is a transition probability from state i to state j and pi is the initial probability of state i.

Finally, we model that the observed value Yi
t of signal i at time t is generated from its state Xi

t via a probabilistic obser-

vation model pðYi
t jXi

t ; n
i
tÞ parametrized by nit . For simplicity, we assume that the observation model is independent of the

state (nit ¼ ni; 8t; i),
pðYjX; nÞ ¼
YT
t¼0

YN
i¼1

pðYi
t jXi

t; n
iÞ; ð7Þ
where Y ¼ fYtgTt¼1 is the observation sequence and n is the collection of parameters fnigNi¼1.
The choice of dependence and observations models is application specific and will impact the complexity of some of the

inference steps, as discussed in Section 2.2.1.
The full SSIM generative model, shown in Fig. 4, incorporates probabilistic models described above along with priors on

structures and parameters:

� Multinomials p are sampled from Dirichlet priors parametrized by a as
ðp1; . . . ;pKÞ � Dirða1; . . . ;aKÞ,
ðpi;1; . . . ;pi;KÞ � Dirðai;1; . . . ;ai;KÞ 8i.

� K structures eEk and parameters ~hk are sampled from the corresponding priors aseEk � pðE; bÞ; ~hk � pðhjeEk; cÞ;8k.
� Parameters of the observation model are sampled as ni � pðni; dÞ;8i.
� Initial values X0 and Y0 are generated as X0 � pðX0jh0Þ and Y0 � pðY0jX0; nÞ.
� For each t ¼ 1;2; . . . ; T (in that order), values of Zt ;Xt and Yt are sampled as
Zt � MultðpZt�1 ;1; . . . ;pZt�1 ;KÞ or
Zt � Multðp1; . . . ;pKÞ if t ¼ 1,

Xt � pðXt jXt�1; eEZt ;
~hZt Þ and Yt � pðYt jXt ; nÞ.

Here, b are the hyperparameters of the prior on dependence structure, pðE; bÞ, and c are the hyperparameters of the prior
on dependence model parameters given structure, pðhjE; cÞ. We assume that these priors are the same for all K models. Since
the distribution on structure is discrete, in the most general form, b is a collection of parameters fbEg (one parameter for each
structure), such that bE is proportional to the prior probability of E:



Fig. 4. State-space switching interaction model (SSIM).
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pðE;bÞ ¼ 1
B
bE / bE; ð8Þ
where B ¼PEbE is a normalization constant. Note that the prior on parameters, pðhjE; cÞ, may depend on the structure and c
is, in general, a collection fcEg of sets of hyperparameters, such that pðhjE; cÞ ¼ pðh; cEÞ.

Learning Bayesian network structures (under reasonable assumptions) is NP hard [10]. The number of possible structures
is superexponential in the number of nodes, and, in the worst case, it may be necessary to calculate the posterior of each one
separately. The same holds in the case of inference of a dependence structure described above (i.e., a dependence structure of

a homogenous DBN). The number of possible such structures is 2N2

.
We employ two fairly general assumptions in order to reduce the complexity of inference over structures. First, we

assume a modular prior on structure and parameters [11–14], which decomposes as a product of priors on parent sets of
individual signals and associated parameters:
pðE; h jb; cÞ ¼
YN
i¼1

pðpaðiÞ jbÞ pðhi jpaðiÞ; cÞ: ð9Þ
As a result, parent sets can be chosen independently for each signal [15], and the total number of parent sets to consider is
N2N , which is exponential in the number of signals. Also, b is no longer a collection of parameters per structure, but rather a
collection of parameters fbi;paðiÞg (one parameter for each possible parent set of each signal), such that
pðpaðiÞ; bÞ ¼ 1
Bi
bi;paðiÞ / bi;paðiÞ; ð10Þ
where Bi ¼
P

sbi;s are normalization constants. Modularity is also reflected in the posterior:
pðE; h jX;b; cÞ ¼
YN
i¼1

pðpaðiÞ jX;bÞ pðhi jX;paðiÞ; cÞ: ð11Þ
If, in addition, the number of parents of each signal is bounded by some constant M (a structure with bounded in-degree
[12–14]), the number of parent sets to evaluate is further reduced to OðNMþ1Þ, which is polynomial in N.

Linear Gaussian SSIM. Linear Gaussian state-space switching interaction models (LG-SSIM) are an instance of SSIM in
which the dependence and observation models of each signal i at each time point t are linear and Gaussian:
Xi
t ¼ eAi

Zt X
~paði;ZtÞ
t�1 þwi

t ; wi
t � Nð0; eQ i

Zt Þ
Yi

t ¼ Ci Xi
t þ v i; v i � Nð0;RiÞ:

ð12Þ
eAi
k and eQ i

k are the dependence matrix and the noise covariance matrix of signal i in the kth dependence model (i.e.,
~hik ¼ ðeAi

k;
eQ i

kÞ), while Ci and Ri are the observation matrix and the noise covariance matrix of the observation model of signal

i (i.e., ni ¼ ðCi;RiÞ). We adopt a commonly used matrix normal inverse Wishart distribution as a conjugate prior on the
parameters of a linear Gaussian model (more details are given in Appendix A).

Latent autoregressive LG-SSIM. The model above implies a first order Markov process. However, it extends to a higher, rth

order process by defining a new state at time t as X 0
t ¼ ½Xt Xt�1 . . . Xt�rþ1�, i.e., by incorporating a history of length r as a basis

for predicting a state at time t þ 1. We will refer to this model as a latent autoregressive (AR) LG-SSIM of AR order r, since the
autoregressive modeling is done in the latent space.



Z. Dzunic et al. /Mechanical Systems and Signal Processing 96 (2017) 239–259 245
2.2.1. Inference in SSIM and LG-SSIM
Exact inference for the SSIM is generally intractable, and one need to resort to approximate methods. An efficient Gibbs

sampling procedure is developed in [6] and shown in Algorithm 1. The procedure alternates between sampling of (1) latent
state sequence X, (2) latent switching sequence Z, (3) parameters of switching sequence dependence models p, (4) param-

eters of K state sequence transition models ðeE; ~hÞ, and (5) parameters of the observation model n. In each step, a correspond-
ing variable is sampled from the conditional distribution of that variable given other variables (i.e., the rest of the variables
are assumed fixed at that step).

This procedure is particularly efficient when the dependence model and the observation model distributions have con-
jugate priors, such as in LG-SSIM, as steps 4 and 5 are reduced to performing conjugate updates. In addition, an efficient
message-passing algorithm for batch sampling of the state sequence X (step 1) is developed in [6]. On the other hand, steps
2 and 3 are independent of these choice, and thus inherent to SSIM in general. Step 3 is simply a conjugate update of a Dirich-
let distribution, while an efficient message passing algorithm for batch sampling of the switching sequence Z is shown in
[15].

Algorithm 1.
1

SSIM Gibbs sampler
In this section, hyperparameters are omitted for brevity, but will be reinserted as needed.
Algorithm in LG-SSIM
1. X � pðXjZ;Y ; eE; ~h; nÞ
 Gaussian-MP block sampling
2. Z � pðZjX; eE; ~h;pÞ
 discrete-MP block sampling
3. p � pðpjZ;aÞ
 conjugate update
4. eE; ~h � pðeE; ~hjZ;X; b; cÞ
 conjugate update
5. n � pðnjX;Y ; dÞ
 conjugate update
2.3. Classification with SSIM

The SSIM model can simply be extended to multiple sequences, as shown in Fig. 5. Here, L denotes the number of
sequences. Each observation sequence Y l ¼ ðYl0;Yl1; . . . ;YlTl Þ has an associated state sequence X l ¼ ðXl0;Xl1; . . . ;XlTl Þ and
switching sequence Zl ¼ ðZl1; Zl2; . . . ; ZlTl Þ, where l is a sequence index and Tl denotes the length of sequence l. The infer-
ence is still performed as in Algorithm 1, except that steps 1 and 2 are repeated for each sequence separately, while the
data needed in steps 3, 4, and 5 (i.e., values of X;Y and Z) is pulled from all sequences. We will use
Y ¼ fYlgLl¼1;X ¼ fX lgLl¼1 and Z ¼ fZlgLl¼1 to denote collections of observation, latent state and switching sequences,
respectively.

In some scenarios, changes in behavior (dependence model) are only expected across different sequences, but not
within each sequence. For example, this is the case in a damage detection setup that we exploit, in which short sequences
of measurements (e.g., �1 min) are recorded far apart from each other (e.g., �1 h). Sequences are short enough such that
changes within them are unlikely. If switching does not occur within sequences, then each sequence can be assigned a
single switching state variable, Zl. We refer to this model as SSIM with multiple homogenous sequences, which is shown
in Fig. 6. Since there are no transitions between switching states, this model does not require transition probabilities and
parameters of their corresponding Dirichlet priors. Only initial probabilities are needed, and thus p ¼ ðp1; . . . ;pKÞ and
a ¼ ða1; . . . ;aKÞ. In this context, we will refer to sequence switching states as sequence labels. Inference over switching
states (labels) in this model is essentially inference over clusters of sequences according to their dependence model
(i.e., dynamics).

Classification of sequences can be reduced to the inference in SSIM with multiple homogenous sequences by performing
joint inference over training sequences and a test sequence while fixing the labels of training sequences. The probability of
any value of the test sequence label is then the frequency of that value in the posterior samples. However, these probabilities
can be computed more directly in the following way.

We assume that in a classification problem there are K classes, and, for each class k 2 f1;2; . . . ;Kg, a collection of Ntr
k

training sequences Ytr
k ¼ fYtr

kjg
Ntr
k

j¼1
is given, thus implicitly assuming Ztr

kj ¼ k for each j. In addition, we will use

Ztr
k ¼ fZtr

kjg
Ntr
k

j¼1
¼ fkgNtr

k to denote a collection of labels associated with training sequences from class k, where fkgNtr
k denotes

a collection of Ntr
k values equal to k. Given a test sequence Ytest and the training data, the goal is to find the probability

distribution of the test sequence label, i.e., PðZtest ¼ k jYtest; Ytr
k0 ;Ztr

k0
� �K

k0¼1Þ, for each k. This probability can be computed
in the following way1:



Fig. 5. SSIM model with multiple sequences.

Fig. 6. SSIM model with multiple homogenous sequences.
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PðZtest ¼ k jYtest; Ytr
k0 ;Ztr

k0
� �K

k0¼1Þ ð13Þ
/ PðZtest ¼ k;Ytest j Ytr

k0 ;Ztr
k0

� �K
k0¼1Þ

¼ PðZtest ¼ k j Ytr
k0 ;Ztr

k0
� �K

k0¼1Þ � PðYtest jZtest ¼ k; Ytr
k0 ;Ztr

k0
� �K

k0¼1Þ
¼ PðZtest ¼ k j Ztr

k0
� �K

k0¼1Þ � PðYtest jZtest ¼ k;Ytr
k ;Ztr

k Þ:
The last equality follows from the fact that the test label is independent of the training sequences given training labels, and
that the test sequence, assuming it belongs to class k, only depends on the training data for that class.

The first term in Eq. (13), PðZtest ¼ k j Ztr
k0

� �K
k0¼1Þ, is the probability of a test sequence belonging to class k before seeing the

sequence, given training labels. It can be computed by marginalizing out multinomial parameters p:
PðZtest ¼ k j Ztr
k0

� �K
k0¼1Þ � PðZtest ¼ k j Ztr

k0
� �K

k0¼1;aÞ ð14Þ
¼
Z
p
PðZtest ¼ k jpÞPðp j Ztr

k0
� �K

k0¼1;aÞdp

¼
Z
p
pk � Dirðp;a1 þ Ntr

1 ;a2 þ Ntr
2 ; . . . ;aK þ Ntr

K Þdp

¼ ak þ Ntr
kPK

k0¼1ak0 þ Ntr
k0
:

Note that Pðp j Ztr
k0

� �K
k0¼1;aÞ is the posterior distribution of p given training labels, which is again a Dirichlet distribution (with

updated parameters) due to conjugacy. The final expression is obtained as the expectation of parameter pk with respect to

that distribution. For convenience, we will write PðZtest ¼ k j Ztr
k0

� �K
k0¼1Þ � PtrðZtest ¼ kÞ.



Z. Dzunic et al. /Mechanical Systems and Signal Processing 96 (2017) 239–259 247
The second term in Eq. (13), PðYtest jZtest ¼ k;Ytr
k ;Ztr

k Þ, is the marginal likelihood of a test sequence under the class kmodel,
given the training sequences Ytr

k from that class. It is computed by marginalizing out kth model structure and parameters
(model averaging):
PðYtest jZtest ¼ k;Ytr
k ;Ztr

k Þ ¼
X
eEk

Z
~hk

PðYtest jeEk; ~hkÞPðeEk; ~hk jYtr
k Þd~hk: ð15Þ
The term PðeEk; ~hk jYtr
k Þ is the posterior distribution of kth model structure and parameters given the training sequences Ytr

k ,
which then serves as a prior for evaluating the test sequence likelihood. For convenience, we will write
PðYtest jZtest ¼ k;Ytr

k ;Ztr
k Þ � LkðYtest jYtr

k Þ.
Finally, the posterior distribution of the test sequence label, Ztest , is obtained by normalizing Eq. (13):
PðZtest ¼ k jYtest; Ytr
k0 ;Ztr

k0
� �K

k0¼1Þ ¼
PtrðZtest ¼ kÞLkðYtest jYtr

k ÞPK
k0¼1PtrðZtest ¼ k0ÞLk0 ðYtest jYtr

k0 Þ
; ð16Þ
and its maximum a posteriori (MAP) estimate is obtained as
bZtest ¼ argmax
k

PðZtest ¼ k jYtest; Ytr
k0 ;Ztr

k0
� �K

k0¼1Þ ¼ argmax
k

PtrðZtest ¼ kÞLkðYtest jYtr
k Þ: ð17Þ
Computing the likelihood in Eq. (15) in closed form is intractable in general. The latent training and test state sequences,

X tr
k and X test , need to be marginalized out to compute PðeEk; ~hk jYtr

k Þ and PðYtest jeEk; ~hkÞ, respectively, and simultaneous
marginalization of a state sequence and model structure and parameters is analytically intractable. Instead, this likelihood
can be computed via simulation:
LkðYtest jYtr
k Þ �

1
Ns

XNs

j¼1

PðYtestjbEj; ĥjÞ; ðbEj; ĥjÞ � PðeEk; ~hk jYtr
k Þ: ð18Þ
Ns instances of dependence models, ðbEj; ĥjÞ, are sampled from the posterior distribution of the model given training
sequences. The test sequence likelihood is evaluated against each of the sampled models, and then averaged out. On the
other hand, in an approximate model which assumes no observation noise (i.e., X i � Yi), the likelihood in Eq. (15) can be
computed in closed form by updating the conjugate prior on dependence structure and parameters with the training data
and then evaluating the likelihood of the test data against thus obtained posterior.

2.4. Single-class classification with SSIM

In a typical real world structural health monitoring scenario, there is no prior data for a particular type of damage. Even if
there has been damage to a structure in the past, it is not likely that exactly the same type of damage will occur in the future,
and thus the multi-class classification procedure described in Section 2.3 cannot be applied. On the other hand, data from an
intact structure can be recorded easily. Damage detection then becomes a single-class classification problem, in which the
goal is to detect whether new data sequences belong to the existing, intact case, or deviate from it and potentially indicate
damage.

In the SSIM framework, as a benefit of the Bayesian approach, single-class classification can be simply reduced to multi-
class classification by assuming that there are two classes (K ¼ 2), that the first class indicates the intact scenario, and that
there is no data for the second (damage) class (Ytr

2 ¼ £;Ztr
2 ¼ £;Ntr

2 ¼ 0). Eq. (13) can now be written as:
PðZtest ¼ k jYtest;Ytr
1 ;Ztr

1 Þ / PðZtest ¼ k jZtr
1 Þ � PðYtest jZtest ¼ k;Ytr

k ;Ztr
k Þ; ð19Þ
where, from Eq. (14),
PðZtest ¼ k jZtr
1 Þ � PtrðZtest ¼ kÞ ¼

a1þNtr
1

a1þNtr
1 þa2

; k ¼ 1
a2

a1þNtr
1 þa2

; k ¼ 2

8<: ; ð20Þ
and, from Eq. (15),
PðYtest jZtest ¼ k;Ytr
k ;Ztr

k Þ ¼
L1ðYtest jYtr

1 Þ; k ¼ 1
L2ðYtestÞ; k ¼ 2

(
ð21Þ

¼

X
eE1

R
~h1
PðYtest jeE1; ~h1ÞPðeE1; ~h1 jYtr

1 Þd~h1; k ¼ 1

X
eE2

R
~h2
PðYtest jeE2; ~h2ÞPðeE2; ~h2Þd~h2; k ¼ 2

8>>>><>>>>: :
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Here, PðeE2; ~h2 jYtr
2 ¼ £Þ ¼ PðeE2; ~h2Þ is simply the prior probability of structure and parameters for class 2 (damage scenario),

while L2ðYtestÞ is the marginal likelihood of the test sequence under that prior.
Finally, Eq. (16) can now be specialized to:
PðZtest ¼ 1 jYtest;Ytr
1 ;Ztr

1 Þ ¼
PtrðZtest ¼ 1ÞL1ðYtest jYtr

1 Þ
PtrðZtest ¼ 1ÞL1ðYtest jYtr

1 Þ þ PtrðZtest ¼ 2ÞL2ðYtestÞ ; ð22Þ

PðZtest ¼ 2 jYtest;Ytr
1 ;Ztr

1 Þ ¼
PtrðZtest ¼ 2ÞL2ðYtestÞ

PtrðZtest ¼ 1ÞL1ðYtest jYtr
1 Þ þ PtrðZtest ¼ 2ÞL2ðYtestÞ ;
which are the probabilities of a given test sequence being ‘‘intact” or ‘‘damaged”, respectively. The higher values of
PðZtest ¼ 2 jYtest;Ytr

1 ;Ztr
1 Þ mean that the dynamics of the test sequence deviates more from the dynamics of intact (training)

sequences, which we relate to a higher probability of damage.
In practice, one may want to act upon the knowledge of damage probability. The simplest rule would be to use a thresh-

old, �dam, such that a further investigation of damage is required if this probability exceeds the threshold, i.e., if
PðZtest ¼ 2 jYtest;Ytr

1 ;Ztr
1 Þ P �dam. A more sophisticated rule could be that different actions are taken for different levels of

damage probability (i.e., when exceeding different thresholds). By rewriting the formula for damage probability as
PðZtest ¼ 2 jYtest;Ytr
1 ;Ztr

1 Þ ¼
PtrðZtest¼2Þ
PtrðZtest¼1Þ �

L2ðYtestÞ
L1ðYtest j Ytr

1 Þ

1 þ Ptr ðZtest¼2Þ
Ptr ðZtest¼1Þ �

L2ðYtestÞ
L1ðYtest j Ytr

1 Þ
; ð23Þ
we can see that it depends on the ratio of likelihoods of the test sequence under the intact and prior models, L2ðYtest Þ
L1ðYtest j Ytr

1 Þ
, and on

the ratio of damage and intact probabilities prior to seeing a test sequence, Ptr ðZ
test¼2Þ

Ptr ðZtest¼1Þ. The first ratio may depend on the choice

of the dependence model (linear Gaussian in this paper) and its hyperparameters (prior on structure and paramaters), but,
assuming that these are appropriate/reasonable choices, it most importantly depends on the test sequence itself and how it

differs from training sequences. On the other hand, the second ratio, Ptr ðZ
test¼2Þ

Ptr ðZtest¼1Þ ¼
a2

a1þNtr
1
, depends only on the prior parameters

a1 and a2 and on the number of training sequences. By controlling parameters a1 and a2, this ratio can be set to an arbitrary
value (assuming fixed training data). Note that a1 and a2 are pseudo-counts of intact and damaged sequences that reflect our
prior belief in the probability of intact versus damage scenario. Intuitively, one should expect a low probability of damage,
and thus a2 	 a1. On the other hand, the prior probability of damage can be set higher than expected (e.g., a2 � a1), which
would reflect the ‘‘fear” of damage and increase the posterior probability that a test sequence belongs to a damage scenario.
That would simply mean that a larger number of test sequences would ‘‘alarm” for damage. Note however the same effect
could be achieved by decreasing the ‘‘alarm” threshold, �dam. Note also that, instead of using the posterior probability of dam-
age, PðZtest ¼ 2 jYtest;Ytr

1 ;Ztr
1 Þ, to indicate the possibility of damage, one can equivalently use the ratio of posterior probabil-

ities of damage and intact scenarios:
PðZtest ¼ 2 jYtest;Ytr
1 ;Ztr

1 Þ
PðZtest ¼ 1 jYtest;Ytr

1 ;Ztr
1 Þ

¼ PtrðZtest ¼ 2Þ
PtrðZtest ¼ 1Þ �

L2ðYtestÞ
L1ðYtest jYtr

1 Þ
; ð24Þ
and devise rules based on the value of this ratio (e.g., ratio of 1 is equivalent to the damage probability of 0:5).
3. Experimental setup

Two different experimental setups were used to test the approach. An experimental laboratory model structure was used
to generate data with an intact or damaged structure, as a basis application on a real building. Data from an instrumented
building at the Massachusetts Institute of Technology (MIT) was used for seeing if the approach could distinguish between
different excitation and environmental conditions in a real structure.

3.1. Laboratory model structure

The laboratory model structure is a 3 story 2 bay configuration with a footprint of 120 cm 
 60 cm and 240 cm tall, as
shown in Fig. 7a. It consists of steel columns and beam frames that have elements with dimensions of
60 cm 
 5.08 cm 
 0.64 cm, and bolted together by 4 bolts at each connection, an example of which is shown in Fig. 7b.
Damage is similarly introduced on the bolted connections with the minor and major damage cases by removing two bolts
or loosening all four bolts at connections 1 and 17, which are on opposite corners of the structure, with 1 being on the first
story, and 17 being on the second. This structure is instrumented with 18 piezoelectric triaxial accelerometers sampling at
6000 Hz at each of the connections between elements. To excite the structure, a small shaker with a weight of 0.91 kg and a
piston weight of 0.17 kg was attached to the top corner of the structure at connection 18, which provided a random white
Gaussian noise excitation in the frequency range of 5–350 Hz in the flexible direction. Test measurements lasted for 30 s,



Table 1
Test cases and damage scenarios for structural models.

(a) Laboratory model structure

Test case Damage scenario

1 Intact model structure
2 Minor damage at 17
3 Major damage at 17
4 Minor damage at 1
5 Major damage at 1
6 Major damage at 1 and 17

(b) MIT Green Building excitation or environmental conditions

Test case Date excitation/env. condition

1 5/14/2012 Unknown event
2–3 6/22/2012 Ambient
4–6 7/4/2012 Fireworks
7 10/16/2012 Earthquake
8–10 4/15/2013 Ambient
11–16 10/7/2013 Windy day

Fig. 7. Details of the experimental setup showing (a) the 3 story 2 bay structure and (b) a bolted connection.
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during which the shaker is always exciting the structure, thus there is no ramp up or unforced section of the data. The dam-
age scenarios are summarized in Table 1a. For each damage scenario, 10 sequences were acquired.
3.2. MIT Green Building

The Green Building is a 21 story building on the campus of MIT that has been instrumented by an accelerometer system,
used as a testbed for system identification and structural health monitoring studies [16]. The building itself is shown in
Fig. 8a and the locations and directions of the 36 uniaxial accelerometers are shown in Fig. 8b. Data from these accelerom-
eters was used to test the methodology in a different situation from the experimental structure, where there is no known
damage or change in the structure between the different data collections. Instead, the excitation and environmental condi-
tions for the structure vary greatly. They are summarized in Table 1b. The excitation conditions vary from typical ambient
vibrations, to a day with 20 mph sustained winds, to a 4.0 magnitude earthquake located approximately 100 miles away. The



Fig. 8. (a) MIT Green Building with (b) sensor locations.
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measurements were made in the months of April to October, and with air temperatures typical of Spring, Summer and Fall,
with temperature effects potentially inducing small changes in the structure due to internal stresses from differential ther-
mal expansion of materials. The goal with processing this data is to use the ambient excitation data as a baseline for the
structure and detect when an anomalous event or excitation occurs, while not triggering false positives during similar ambi-
ent excitations, while under different environmental conditions. We subdivided the test cases into several sequences of
30,000 sample length. Some of the sequences are longer than the others, so there are multiple sequences for some of the test
cases. The test cases belonging to each excitation and/or environmental condition are given.

4. Results

We present three types of results: on interaction analysis, multi-class classification, and single-class classification. The
goal of interaction analysis is to understand how an inferred structure among signals correlates with physical properties
of a building and how it may differ under different damage or environmental conditions. The goal of multi-class classification
experiments is to understand how well the model can differentiate between an intact structure and different types of dam-
age scenarios in an ideal case when damage scenarios are known in advance and training data from these scenarios is avail-
able. Finally, the goal of single-class classification experiments is to understand the ability of the model to detect anomalous
behavior when only data from an intact (normal) scenario is available a priori, which most closely resembles typical struc-
tural health monitoring applications in the real world.

We employ the latent-AR LG-SSIM model in all experiments. We find that an AR order 5 is sufficient to produce good
results, although there is a slight advantage by further increasing this order. Hyperparameter values are either estimated
from data or set in a general fashion (e.g., implying a broad prior distribution). In all experiments, we assume presence of
a self edge for each node in the dependence structure.

We compared the classification results obtained by the full SSIM model and an approximate model which assumes no
observation noise (Section 2.3) and found that on the datasets presented here the full model performs only slightly better,
but at the significant additional computational cost (mainly due to step 1 in the inference algorithm). Therefore, we present
here detailed results obtained using the approximate model.
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4.1. Interaction analysis

4.1.1. 3-story 2-bay structure
We analyze the results of inference over dependence structure among signals from different sensors on the 3-story 2-bay

structure. The number of parents of each node is bounded to 4, including the assumed self-dependency (therefore, 3 addi-
tional parents are allowed). Each data sequence is split into 18 subsequences that are 10,000 samples long. For each class, the
posterior distribution over edges is computed on 180 subsequences that belong to that class (10 original sequences, 18 sub-
sequences each) and then averaged out. The averaging is performed to get a stable result, since the posterior distribution
fluctuates across subsequences. A visualization of the parent and child relationships for the intact structure is shown in
Fig. 9. Colors represent the node the relationship originates from, and the width of the line represents the edge probability
(wider is more likely). Specifically, relationships are plotted if their probability is higher than 0.3, and in Fig. 9a, the parents
of the nodes are plotted, while in Fig. 9b the children of nodes are plotted. The nodes are vaguely arranged in the physical
shape of the structure, and we can see that a lot of the same possible relationships in the physical structure, such as the col-
umns, the beams, and the cross beams between the two sides of the structure, also show up in the inferred dependence
structure.

Edge posteriors are also visualized as a matrix where the rows are the parents, and the columns are the child nodes,
shown in Fig. 10a. We see that there are two quadrants where the relationships are strong, the 1–9 parent child relationships,
and the 10–18 parent child relationships, which correspond to the two sides of the structure. Within these quadrants, we see
that there are strong relationships in groups of three, 1–3 for example, suggestive of the columns in the structure. We also
see that there are relationships between nodes separated by three, such as 1:4:7, and similar for all the other nodes, which
are suggestive of the beams that connect the nodes in the same story of the structure. Then, the other strong relationship is
between the two sides of the structure, 1:10, 2:11, etc. which is seen as an off diagonal.

The results of inference for the other damage scenarios are also shown, and they mostly resemble the structure for the
intact scenario. Looking at Fig. 10b instead, where for the damage cases, the difference from the intact scenario is shown,
a couple of differences become more obvious. For both of the minor damage scenarios, the differences are minimal. However
for major damage at node 1, we see that node 1 is now less likely a parent of nodes 2, 3, and 10. For example, the most likely
parents of node 2 in the intact structure are nodes 1, 5 and 11, but for major damage at node 1, node 1 is replaced by node 3
on this list. Note that sensor 1 is actually slightly below the joint, so the damaged joint stands between nodes 1 and 2. For
major damage at node 17, node 13 is much less often a parent of node 15, and the same for node 14, being a parent of node
13, all nodes that are physically close to node 17. Also, the dependence of node 18 on nodes 16 and 17 is reduced, as well as
the dependence of node 17 on node 18. Note that the damaged joint stands between node 18 on one side and nodes 16 and
17 on the other side. Similarly, the dependence of node 11 on node 17, between which the shortest path goes through the
damaged joint, becomes less likely. Finally, in the dual major damage scenario at both 1 and 17, both these effects are seen in
the inferred structure.
4.1.2. Green Building
We use a subsequence of length 10,000 from the 6/22/2012 ambient recording to infer the dependence structure among

sensor signals from the Green Building. An AR order of 5 was used, with a maximum of 3 additional parents allowed. We plot
a visualization of the parent and child relationships in Fig. 11. The color in these plots shows the direction of the sensor in the
building, with red for E-W, blue for N-S, and green for vertical sensors. We see that there are many relationships between the
Fig. 9. 3D visualization of (a) node parent and (b) node children relationships with probability above 0.3.



(a) Inferred Edge Probabili�es for Difference Scenarios (b) Inferred Edge Probabili�es in Intact Case, Difference from Intact

Fig. 10. (a) Probability of inferred parent-child relationships for intact and damaged cases obtained by averaging over many tests when number of parents
is limited to 4. (b) Probability of edges in intact case and difference from intact case for damaged scenarios.
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sensors in the same direction, and fewer between sensors in different directions. Most relationships are between the sensors
that are located close to each other. There is also a fair number of relationships across the structure for the NS sensors.

A particularly interesting observation is the lack of relationships between the vertical sensors except for the pairs of 3–4
and 5–6. This may be explained by the rocking behavior found in the building [16], where sensors 3 and 4 move in phase, in
opposition to sensors 5 and 6.

These relationships are also visualized in a matrix shown in Fig. 12. The sensors are grouped into vertical sensors, EW
sensors, and then NS sensors, as given in the axis labels.

4.2. Multi-class classification

We consider the problem of classification of sequences according to the structure condition, as described in Section 2.3.
This problem is not directly applicable to real civil structures, as either damage has never occurred or it is unlikely that
exactly the same damage scenario will occur in the future. However, it tells us how well the algorithm can distinguish
not only damage from intact, but also different damage scenarios from each other. It is also worth noting that in some other
damage detection problems, such as with machine parts, classification may actually be a realistic approach, as there may
only be a handful of types of damages that typically occur and data from such scenarios may be available.

4.2.1. 3-story 2-bay structure
Recall that there are 10 sequences of each class. We perform 10 rounds of classification. In round j, sequence j from each

class is included in the training set, while the other 9 sequences of each class are used for testing. Classification results are
then averaged over all 10 rounds. To reduce computation, a subsequence of length 5000 is used from each sequence, except
in the experiments that test the effect of training and test sequence lengths. Although the results with longer sequences may
be slightly better, they are not qualitatively different.

Interestingly, we found that the best classification results are obtained when no additional parents (other than self) are
allowed. Explaining this result requires further investigation. On the other hand, classification result on a single-column
structure constructed from similar elements and which is excited by displacing it and let to vibrate freely are not degraded
when additional parents are included [7].

First, for each pair of classes i and j, we compute the average log-likelihood of a test sequence from class i given a training
sequence from class j (the average is over all pairs of sequences from classes i and j). Note that the average log-likelihoods do
not account for the variability within a class and thus can only partially predict classification results. However, they can be
considered as a measure of (asymmetric) similarity between classes. In particular, the comparison of log-likelihoods of a test
class given different training classes is useful to indicate its possible ‘‘confusion” with other classes. The log domain is chosen



Fig. 11. 3D visualization of Green Building (a) node parents and (b) node children relationships with incidence over 10%.
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to bring likelihoods closer to each other for the purpose of illustration, since the differences in likelihoods are huge in their
original domain.

The resulting class-class log-likelihood matrix is shown in Fig. 13a. For the purpose of visualization, each column is nor-
malized to contain values between 0 and 1, which does not change the relative comparison of values within a column. A
different visualization of the same log-likelihood matrix is shown in Fig. 13b, in which each group of bars corresponds to
a single test class, while bars within a group correspond to different training classes. Clearly, the average log-likelihood of
each class is the highest when conditioned on sequences from the same class (diagonal entries). This suggests that the model
indeed captures important features pertained to each class via posterior distribution of parameters. However, for some
classes, the log-likelihood is also relatively high when conditioned on some of the classes other than itself. For example,
the highest confusion is between the low-damage classes, namely, the intact class, 1, and the two minor damage classes,
2 and 4. The lesser major damage classes, 3 and 5, seem to be occasionally confused as classes with either smaller or higher
damage relative to them. Finally, the greater major damage class, 6, is most similar to the lesser major damage classes.

Classification results are shown in Fig. 13c and d. Again, these are two different visualizations of the same results. For each
pair of classes, test class i and training class j, the frequency of classifying a test sequence from class i as belonging to class j is
shown. Therefore, each column in the matrix in Fig. 13c, as well as each group of bars in Fig. 13d, must sum to one. Overall,
sequences are classified correctly most of the times (high diagonal values). Sequences frommajor damage classes (3, 5 and 6)
are classified almost perfectly. On the other hand, some confusion between the three low-damage classes (1, 2 and 4) is



Fig. 12. Matrix visualization of node incidence for Green Building. The sensors are grouped into vertical sensors, EW sensors, and then NS sensors, as given
in the axis labels. Concentration of high probability edges around the diagonal shows that many relationships are between the sensors in the same direction
and close to each other.
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Fig. 13. 3 story 2 bay structure data class-class log-likelihoods are shown as a (a) matrix and (b) bars grouped by test class. Similarly, classification
frequencies are shown as a (c) matrix and (d) bars grouped by test class.
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present. In particular, sequences from the class that corresponds to a minor damage at node 17 are often misclassified as
belonging to the intact class. This could possibly be attributed to the closeness of this node to the shaker.

The overall classification accuracy as a function of training and test sequence lengths is shown in Fig. 14a. Three different
training sequence lengths were used, 1000; 5000 and 10;000, while the test sequence length is varied from 1000 to 10;000.



Fig. 14. (a) Overall classification accuracy on 3 story 2 bay structure data as a function of training and test sequence lengths. (b) Classification frequencies
when training and test sequence lengths are 5K and 1K , respectively.
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Note that classification accuracy on the 3 story 2 bay structure data consistently improves with the increased length of either
training or a test sequence. This trend suggests that there is likely no significant variability in the dynamics of a sequence
over time, and, consequently, longer sequences represent effectively more data. This is an expected behavior, since excitation
provided by the shaker is uniform over time. This is in contrast to the results on a single-column structure from [7], which
show that for a fixed length of a training sequence classification accuracy increases with test sequence length until test
sequence length reaches training sequence length, after which classification accuracy decreases. This behavior could be
attributed to the nature of excitation used in that setup, which is free vibration – i.e., there is no constant excitation over
time and different parts of a same sequence may vary in behavior. Finally, for comparison with the results in Fig. 13d, in
which both lengths are 5000, Fig. 14b shows classification results on the 3 story 2 bay structure data when training and test
sequence lengths are 5000 and 1000, respectively.
4.3. Single-class classification

4.3.1. 3-story 2-bay structure
As in the evaluation of multi-class classification above, subsequences of length 5000 are used for training and testing. For

each training and each test sequence, the value L2ðYtest Þ
L1ðYtest j Ytr

1 Þ
is computed, where labels 1 and 2 correspond to intact and damage

classes, as in Section 2.4. The test sequence is classified as anomalous if this value is above some threshold �dam. Note that this

is equivalent to using Eq. (24), since the ratio Ptr ðZtest¼2Þ
Ptr ðZtest¼1Þ is determined by the prior and can be absorbed into the threshold.

A receiver operating characteristic (ROC) curve [17], which represents the rate of true positives as a function of the rate of
false positives, is computed separately for each damage scenario by varying the value of the threshold �dam. Cross-validation
is used to increase the number of training-test pairs. In each round, one sequence from intact scenario is considered as a
training sequence, while the remaining 9 intact sequences and all 10 sequences from the chosen damage scenario are treated
as test sequences. The number of false positives and the number true positives are computed as a function of �dam and aggre-
gated over all rounds (i.e., over all choices of a training sequence).

Thus computed ROC curves for all damage classes are shown in Fig. 15. ROC curves are ‘‘perfect” for all major damage

scenarios, in that there is a threshold for which all test sequences are correctly classified (i.e., the value L2ðYtest Þ
L1ðYtest j Ytr

1 Þ
is below

the threshold for all intact test sequences and it is above the threshold for all sequences from the damage case). Note that
the ROC curves for scenarios 3 and 5 are not visible in Fig. 15 because they are overlayed by the curve for scenario 6. The ROC
curve for the case of minor damage at node 1 (scenario 4) is close to perfect, while the worst result is for the case of minor
damage at node 17 (scenario 2). This is not surprising, given that we already found in the previous section that most errors in
a classification setting occur when an intact sequence is misclassified as belonging to scenario 2, and vice versa, i.e., that
sequences from these two classes are most similar to each other.

In addition, for each damage scenario, a point that corresponds to the threshold value �dam ¼ 1 is shown in Fig. 15 with an
‘x’ mark. This threshold value corresponds to the posterior probability of a test sequence being damaged equal to 0.5, under
the assumption that the prior probabilities of a test sequence being intact or damaged are equal. Note that there are no false
positives in any of the scenarios. In other words, the posterior probability that a sequence is damaged is never higher than
0.5 for intact sequences. On the other hand, for the major damage scenarios, this probability is above 0.5 for almost all dam-
aged sequences. However, only about 60% of damaged sequences have posterior probability of damage above 0.5 in case of
the minor damage at node 1, and less than 15% of damaged sequences are classified as damaged by this rule in the case of the
minor damage at node 17.

If one wants to devise a threshold rule in practice, the threshold that corresponds to the posterior probability of damage
of 0.5 is not necessarily the right choice. From Fig. 15 we can see that, in the case of minor damages, this rule would classify a
sequence as damaged only when it’s very certain of it. If one wants to be less conservative and detect more damaged cases



Fig. 15. ROC curves for each damage scenario on 3-story 2-bay structure data. Points on the curves that correspond to sequences with the posterior
probability of damage above 0.5 being classified as damage are marked with an ‘x’.
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(at the expense of false positives), the threshold should be set to a lower value. However, choosing that number may not be
as intuitive as one may expect. The likelihood of a sequence depends on its length approximately exponentially since the

likelihoods of variables at each time point are multiplied together.2 The ratio L2ðYtest Þ
L1ðYtest j Ytr

1 Þ
, which is used to discriminate damaged

from intact sequences, approaches 0 or infinity exponentially with sequence length, depending on whether the test sequence is
more likely under the posterior model given the training sequence or under the prior model. In an ideal case, if the model per-
fectly matches the data, one could simply ‘‘trust” these probabilities – i.e., if the model tells that the probability of damage is 1,
that would indeed mean that there is almost certainly damage, and, similarly, sequences with posterior probability of damage
close to 0 would almost certainly correspond to an intact structure. However, due to the fact that the statistical model is only an
approximation to the physical model, some sequences from a damage scenario may actually have low posterior probability of
damage or some sequences from intact scenario may have high probability of damage. From the results above, we see that the
former is the case for the 3-story 2-bay structure data.

One approach to compensate for the effects of sequence length and model mismatch is to adjust the threshold to account
for them. However, that is a very hard problem, as it is difficult to quantify these effects precisely (or even approximately).
Instead, we take a data driven approach to choosing a threshold. Since the assumption is that the data from a damage sce-
nario is not available a priori, we can only use the data from the intact scenario. Specifically, we assume that one intact
sequence is used as a training sequence, 8 intact sequences are used for tuning, and the remaining intact sequence is used

for testing (along with all ten sequences from a damage scenario that is tested). First, the value of the ratio L2ðYtest Þ
L1ðYtest j Ytr

1 Þ
is com-

puted for all tuning sequences. Let Ltune1 ; . . . ; Ltune8 denote these values. A threshold is computed as a function of these values,
which is then applied to classify the test sequences. This is repeated for all possible choices of a training sequence and tuning
sequences among intact data, and the results are aggregated (which we refer to as ‘‘cross-validation” in this context). It
remains to discuss how to choose the threshold �dam as a function of values Ltune1 ; . . . ; Ltune8 . One possibility is to use the max-
imum of these values, which would result in low false positive rates, and, if the damage sequences are relatively different
from intact sequences, would result in a large true positive rate. More generally, if these values are sorted such that
Ltune1 > Ltune2 > . . . > Ltune8 , then, choosing a threshold that is between ith and ðiþ 1Þst value would approximately result in
the false positive rate of i=8. Therefore, the false positive rate can be controlled even though the corresponding rate of true
positives is not known a priori. Another approach is to assume that these values come from a Gaussian distribution and com-
pute their empirical mean and standard deviation. The threshold can then be set as ELtunei þ krLtunei , for some value of k (e.g.,
k ¼ 2 would correspond to taking two standard deviations away from the mean). Fig. 16 shows the tradeoff between the
rates of true positives and false positives for these two approaches in the case of minor damage at node 17 (scenario 2).
Fig. 16a shows the tradeoff points when the threshold is set to Ltune1 ; . . . ; Ltune8 , respectively, assuming that these values are
sorted in the decreasing order. Fig. 16b shows the tradeoff points for various values of k when he threshold is set to
ELtunei þ krLtunei . Note that the points in both figures do not necessarily fall on the ROC curve because thresholds are a function
of tuning sets and are therefore not necessarily uniform across all training-tuning sets.
2 Technically, this is the case for a specific value of model structure and parameters, and the overall likelihood is obtained by summing/integrating over
possible values of structures and parameters, weighted by their prior.



Fig. 16. Points of tradeoff between the rates of true positives and false positives when: (a) The threshold is set to Ltune1 > Ltune2 > . . . > Ltune8 , respectively. (b)
The threshold is set to ELtunei þ krLtunei for different values of k.

Fig. 17. Matrix of the log-likelihood ratios, log L2 ðYtest Þ
L1ðYtest j Ytr

1 Þ
, between Green Building data sequences, normalized to be between 0 and 1. The value at row i and

column j corresponds to the ratio computed when sequence i is considered as a training sequence and sequence j as a test sequence. The correspondence
between sequence indices and events is: 5/14/2012 Unknown Event (1), 6/22/2012 Ambient Event (2–3), Fireworks (4–6), Earthquake (7), 4/15/2013
Ambient Event (8–10), and Windy Day (11–16). Note that the events that are the most similar to each other are the events in ambient conditions, windy
conditions, but also the first two sequences for the fireworks event, which were recorded before the fireworks actually started. On the other hand, the last
sequence in the fireworks test case, the earthquake, and the 5/14/2012 event test cases all have significantly higher likelihood ratios with respect to the
ambient cases. These results suggest that we can likely classify when the structure has been excited in a significantly different way than typical ambient
conditions.
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4.3.2. Green Building

Fig. 17 shows the matrix of the logarithm of likelihood ratios, log L2ðYtest Þ
L1ðYtest j Ytr

1 Þ
, normalized to be between 0 and 1 for the visu-

alization purpose. The value at row i and column j corresponds to the ratio computed when sequence i is considered as a
training sequence and sequence j as a test sequence. Recall from Eq. (24) that this ratio can be used to discriminate
sequences that behave differently from the training sequence. The higher the value of the ratio is, the more likely it is that
the test sequence will be labeled differently from the training sequence.

We can see that the events that are the most similar to each other are the events in ambient conditions, windy conditions,
but also the first two sequences for the fireworks event. For the fireworks event, when the recording was made during the
Boston July 4th fireworks show, only the last sequence of the three occurs during when the fireworks are being set off. The



258 Z. Dzunic et al. /Mechanical Systems and Signal Processing 96 (2017) 239–259
first two sequences are of the normal ambient structure, and thus they have low likelihood ratio with respect to the other
ambient structure test cases. The windy condition measurements are not as dissimilar from the ambient measurements as
we would have expected as winds were sustained at 20mph with gusts at higher speeds. The accelerations measured how-
ever are likely similar to ambient conditions with slightly higher magnitudes, as the winds are random excitations.

The last sequence in the fireworks test case, the earthquake, and the 5/14/2012 event test cases all have significantly
higher likelihood ratios with respect to the ambient cases. What’s interesting is that the fireworks sequence is similar to
the 5/14/2012 event, but both are dissimilar to the earthquake case. The 5/14/2012 event was when the recording system
was triggered to record because accelerations exceeded a preset threshold, however there is no known event that corre-
sponds to it. The time-series looks like a single impulse, possibly suggesting similar behavior induced in the structure to
the series of impulses from the fireworks sequences. The third fireworks sequence seems to be the most dissimilar from
all the other sequences.

What these results tell us is that we can likely classify when the structure has been excited in a significantly different way
than typical ambient conditions. The differences between random ambient excitations and impulse excitations or earth-
quake excitations are clearly visible. We do not evaluate the performance of the single-class classification formally, as we
did with the laboratory data using ROC curves, since the number of recorded sequences for the Green Building is not that
large. However, it is clear from the likelihood ratio matrix in Fig. 17 that using any of the ambient sequences as a training
sequence and a reasonable threshold rule (e.g., use other ambient sequences as tuning data and take the highest ratio among
them as a threshold) would perfectly classify the sequences from the earthquake and the 5/14/2012 event and the third fire-
works sequence as non-ambient. Sequences from the windy condition would also be classified as non-ambient in most cases,
except when the second sequence of the 6/22/2012 ambient recording is used for training. In that case, the sequences from
the windy condition have lower likelihood ratio than those from the 4/15/2013 ambient event. If the latter ones are used for
tuning, the former ones would be classified as ambient. Also, note that the two ambient recordings are slightly different from
each other, which could possibly be attributed to the temperature difference of 40�F between these two recordings. This sug-
gests that acquiring more ambient recordings over time and in different conditions would be useful to understand the vari-
ation in them and how that relates to the classification problem.

5. Conclusion

In this paper we presented an approach using Bayesian inference on a state-space switching interaction model to detect
and classify changes indicative of either damage or a change in excitation in structures. We applied the methodology devel-
oped in Dzunic et al. [6] to data from two structures, a laboratory model and the MIT Green Building as a test for structural
health monitoring. Inference was done over dependence structures in the model, and it was determined that the parents of a
node were most likely physically connected by a structural element to that node, possibly providing information about the
physical structure between sensor locations. Damage detection was accomplished by obtaining the log-likelihoods of test
sequences given a different training sequence. Test data was classified correctly to their respective damage scenarios or
the baseline structure case with relatively high accuracy. Classification was also accomplished in a single class methodology
more realistic for structural health monitoring where training data from a damaged structure may not be available. Future
work involves testing the approach on more varied structural configurations, damage scenarios, and in environmental con-
ditions. Continuous vibration records from a structure would be useful for further testing to explore the switching interac-
tion model. Another approach for classification might involve using the edges in the dependency graph and should also be
tested.
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Appendix A. Matrix normal inverse Wishart prior

Here, we consider a linear Gaussian model of a multivariate signal Xt ,
Xt ¼ AXt�1 þwt ; wt � Nð0;QÞ; ðA:1Þ

with parameters A (transition matrix) and Q (noise covariance matrix).

We assume that H ¼ ðA;QÞ follows a matrix-normal inverse-Wishart distribution, which is a conjugate prior to the
dependence model NðXt ;AXt�1;QÞ:
pðA;Q ;M;X;W;jÞ ¼ MN � IWðA;Q ;M;X;W;jÞ ¼ MNðA;M;Q ;XÞIWðQ ;W;jÞ: ðA:2Þ
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It is a product of (1) the matrix-normal distribution
MNðA;M;Q ;XÞ ¼
exp � 1

2 tr X�1ðA�MÞTQ�1ðA�MÞ
h i� �
ð2pÞdl=2jXjd=2jQ jl=2

; ðA:3Þ
where d and l are the dimensions of matrix A (Ad
l), while Md
l;Qd
d and Xl
l are the mean, the column covariance and the
row covariance parameters; and (2) the inverse-Wishart distribution
IWðQ ;W;jÞ ¼ Wj jj=2
2jd=2Cdðj=2Þ

Qj j�ðjþdþ1Þ=2 expð�1
2
trðWQ�1ÞÞ; ðA:4Þ
where d is the dimension of matrix Q (Qd
d) and CdðÞ is a multivariate gamma function, while j and Wd
d are the degree of
freedom and the inverse scale matrix parameters. Note how the two distributions are coupled. The matrix normal distribu-
tion of the dependence matrix A depends on the covariance matrix Q, which is sampled from the inverse Wishart
distribution.

Due to conjugacy, the posterior distribution of parameters A and Q given data sequence X0;X1; . . . ;XT is also a matrix-
normal inverse-Wishart distribution:
pðA;Q jX0:T ;M;X;W;jÞ ¼ MN� IWðA;Q ;M0;X0;W0;j0Þ ¼ MNðA;M0;Q ;X0ÞIWðQ ;W0;j0Þ; ðA:5Þ

where
X0 ¼ X�1 þ
XT�1

t¼0

XtX
T
t

 !�1

M0 ¼ MX�1 þ
XT
t¼1

XtX
T
t�1

 !
X0

j0 ¼ jþ T

W0 ¼ Wþ
XT
t¼1

XtX
T
t þMX�1MT �M0X0�1M0T :

ðA:6Þ
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