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Abstract

We consider the setting of sequential deci-
sion making where, at each stage, poten-
tial actions are evaluated based on expected
reduction in posterior uncertainty, given by
mutual information (MI). As MI typically
lacks a closed form, we propose an approach
which maintains variational approximations
of, both, the posterior and MI utility. Our
planning objective extends an established
variational bound on MI to the setting of
sequential planning. The result, variational
information planning (VIP), is an efficient
method for sequential decision making. We
further establish convexity of the variational
planning objective and, under conditional ex-
ponential family approximations, we show
that the optimal MI bound arises from a re-
laxation of the well-known exponential fam-
ily moment matching property. We demon-
strate VIP for sensor selection, experiment
design, and active learning, where it meets
or exceeds methods requiring more computa-
tion, or those specialized to the task.

1 Introduction

Bayesian machine learning research has paid much at-
tention to the development of posterior inference algo-
rithms, yet comparatively little attention to methods
for decision making based on the results of inference.
In this paper we explore sequential decision making
based on information theoretic quantities. Specifically,
we introduce efficient methods for information plan-
ning, where decisions are generated by maximizing the
mutual information (MI) utility (Williams, 2007).

Our setting resembles Bayesian experiment de-
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sign (Lindley, 1956), where experiments are chosen
to minimize uncertainty over a quantity of interest.
MI has long been used as a design utility in this set-
ting (Blackwell, 1950; Bernardo, 1979). Unlike ex-
periment design, which typically assumes the cost of
a measurement dominates that of inference, our fo-
cus is on high throughput sequential decision systems.
Where the former relies on Markov chain Monte Carlo
(MCMC), we present a comprehensive approach to in-
ference and planning based on efficient variational ap-
proximations.

Our approach, which we call variational information
planning (VIP), maintains a series of variational ap-
proximations to the posterior and MI utility. For the
planning stage, VIP extends a lower bound of MI (Bar-
ber and Agakov, 2004) to the sequential setting. The
bound is optimized over an auxiliary distribution ap-
proximating the expected posterior. We demonstrate
that VIP yields a convex optimization for exponential
family auxiliary models, leading to efficient planning.
We establish optimality conditions for the natural pa-
rameters of this family, and show that they are a relax-
ation of the well known moment matching conditions.

Despite good predictive accuracy, variational approx-
imations of posterior uncertainty can be poor (Gior-
dano et al., 2015; Turner and Sahani, 2011). Thus,
a naive variational approach will tend to yield poor
planning decisions. We address these issues by defin-
ing a class of auxiliary distributions that, when condi-
tioned on future observations, define exponential fam-
ilies. This set allows arbitrary nonlinear dependence
on the observation variable, and is thus strictly larger
than the set of jointly exponential family models.

In our experiments we demonstrate that VIP is suf-
ficiently flexible to apply in a variety of problem in-
stances such as nonlinear target tracking in a sen-
sor network, experiment design, and active learn-
ing. Moreover, VIP meets or exceeds the accuracy of
methods based on exact inference, MCMC requiring
more computation, or specialized variational approxi-
mations.
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2 Sequential Information Planning

Consider a model of latent variables x and observations
Yt = {y1, . . . , yt}. At each time t a discrete action
at ∈ {1, . . . , A} parameterizes the likelihood, denoted
pat(yt | x). Let Dt = {Yt,At} be the set of past obser-
vations and chosen actions At = {a1, . . . , at} at time
t. The posterior is then,

p(x | Dt) ∝ p(x)

t∏
i=1

pai(yi | x) (1)

The goal of sequential information planning is to
choose the sequence of actions A that minimize en-
tropy of the posterior (1). Specifically, at time t, action
at is selected to maximize the posterior MI,

a∗t = arg max
a

I(X;Yt | Dt−1)

= arg max
a

H(X | Dt−1)−Ha(X | Yt,Dt−1) (2)

New observations are then drawn from the appropri-
ate likelihood yt ∼ pat(· | x) and the posterior is up-
dated. However, calculating posterior MI in Eqn. (2)
is complicated for two reasons. First, entropies involve
expectations under the posterior (1). Second, the con-
ditional entropy H(X | Y,D) requires evaluation of the
posterior predictive distribution p(y | D) as in,

H(X | Y,D) = E
[
− log

p(x, y | D)

p(y | D)

]
,

where we have dropped explicit indexing on time.
One approach is to estimate this over samples
{yit} ∼ pa(y | Dt−1). The resulting empirical plug-in
estimator of MI is,

Îa = − 1

N

N∑
i=1

log
pa(yit | xi)

1
M

∑M
j=1 pa(yit | xij)

. (3)

Independent samples {xij}Mj=1 ∼ p(x | Dt−1) are re-
quired for each action, and observation sample, to en-
sure estimates are independent, thus increasing sam-
ple complexity. While the estimator (3) is consis-
tent, it is biased. Moreover, bias is known to decay
slowly (Zheng et al., 2018; Rainforth et al., 2018).

3 Variational Information Planning

Motivated by the challenges of sample-based MI esti-
mation, we introduce an efficient variational approach.
Beginning with a lower bound on MI, we extend this to
sequential decision making and formulate the calcula-
tions for a model where observations are conditionally
independent. Finally, we show how VIP can be ap-
plied to a more complex model common in the related
setting of active learning.

3.1 Variational Information Bound

For any valid conditional distribution ω(x | y), Gibbs’
inequality admits the following lower bound on MI:

I(X;Y ) ≥ H(X) + Ep[logω(X | Y )]. (4)

This bound has been independently explored in vari-
ous contexts (Barber and Agakov, 2004; Mohamed and
Rezende, 2015; Gao et al., 2016; Chen et al., 2018).
In the remainder of this paper we refer to ω(x | y) as
the auxiliary distribution. The dual planning problem
maximizes the bound (4) w.r.t. this auxiliary distri-
bution. Each stage of planning requires the posterior
mutual information, I(X,Yt | Dt−1) bounded by,

H(X | Dt−1) + Ep[logω(X | Y ) | Dt−1]. (5)

Calculating Eqn. 5 involves expectations over the pos-
terior distribution p(x, yt | Dt−1), thus efficient se-
quential planning requires further approximations.
The procedure is most easily understood for a sim-
ple model of conditionally independent observations,
which we now discuss before moving to more compli-
cated settings.

3.2 Conditionally Independent Observations

Consider the model in Eqn. (1) where observations
y1, . . . , yt are independent, conditioned on x. Given
the variational approximation q(x) ≈ p(x | Dt−1) we
form a local approximation of the distribution over
the future measurement at time t,

p̂a(x, yt) ≡ qt−1(x)pa(yt | x) ≈ pa(x, yt | Dt−1). (6)

Here, pa(yt | x) is the true likelihood under the hy-
pothesized action a. We then bound the MI under
p̂(·) as,

Hp̂(X) + max
a, ω

Ep̂a [logω(X | Yt)] . (7)

Under this model the marginal entropy H(X) is con-
stant during planning and can be ignored. The
bound (7) can be evaluated in parallel for all actions
1, . . . , A. Fig. 1 illustrates the role of each approxima-
tion in a single planning stage, and how the approx-
imations relate to the target distributions. Eqn. (7)
bounds mutual information under the local approxi-
mation p̂(·). The conditions ensuring Eqn. (7) is a
reliable surrogate to Eqn. (5) are the same as those
for variational inference to be effective.

3.3 Semi-Supervised Annotation Model

We now consider a more complicated model consisting
of semi-supervised annotations {yn}Nn=1, a fixed set
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Figure 1: Variational information planning steps. Left: Given observations Y the posterior is approximated
with a tractable family q(x) ≈ p(x | Y). Center: To consider a new observation y, a local approximation is formed
p̂(x, y) = q(x)p(y | x) using the forward model. Right: The auxiliary distribution ω(x | y) minimizes KL(p̂(x | y) ‖ω(x | y))
to bound I(X;Y ). When the auxiliary distribution is in the exponential family we achieve efficient updates, yet allow
nonlinear dependence on the conditioning variable y, thus yielding tighter MI bounds.

of data {zn}Nn=1, and latent quantities x. The joint
distribution is given by,

p(x, y, z) = p(x)

N∏
n=1

p(zn, yn | x).

Variations of this model are common in active learn-
ing contexts (Settles, 2012). For example, yn may be a
class label for data element zn. Each learning stage se-
lects the most informative annotation yn∗ maximizing
posterior MI:

n∗ = arg max
n

I(X;Yn | Dt−1) (8)

Here Dt−1 is the set of all data z1, . . . , zN and the
currently observed annotations. To form a local ap-
proximation p̂(·) we assume a posterior approximation
that is a product of nonnegative normalizeable factors,

q(x) ∝
N∏
n=1

ψn(x) (9)

In expectation propagation (EP) parlance, factors
ψ(x) can be interpreted as messages in a factor graph.
Similarly, EP defines the concept of a cavity distribu-
tion q\n(x) ∝ q(x)/ψn(x), which expresses the pos-
terior approximation having removed zn. Our local
approximation is then analogous to the EP augmented
distribution,

p̂(x, yn) ∝ q\n(x)p(zn, yn | x). (10)

The MI lower bound is then identical to (7). More
complicated models with nuisance variables that must
be integrated out for planning can be handled in a sim-
ilar manner, with additional marginalization. We con-
sider such a setting for the labeled LDA active learning
example in Sec. 6.3.

4 Optimization for Conditional
Exponential Families

Optimization of the bound (7) with respect to the aux-
iliary distribution ω(x | y) can be complicated in gen-
eral. In this section we consider optimization for the
class of auxiliary distributions which are in the ex-
ponential family, when conditioned on a hypothesized
measurement. This flexible family allows for nonlin-
ear dependence on the observation y as illustrated in
Fig. 1 (right). We show that the resulting optimization
is convex in the exponential family natural parameters
and that optimality conditions yield a relaxation of the
moment matching property for exponential families.

4.1 Optimizing the Auxiliary Distribution

Consider the set of conditional distributions in the ex-
ponential family having density,

ωθ(x | y) = h(x) exp
(
θ(y)Tφ(x, y)−A(θ(y))

)
, (11)

with natural parameters θ(y) a function of the condi-
tioning variable, sufficient statistics φ(x, y), base mea-
sure h(x) and log-partition function A(θ(y)). Optimiz-
ing the bound in Eqn. (7) is equivalent to minimizing
the cross entropy,

θ∗(y) = arg min
θ

J(θ) ≡ Ep̂[− logωθ(x | y)]. (12)

Convexity of J(θ) can be established by explicit cal-
culation of the Hessian. Alternatively, by adding a
constant −H(p̂) we have the following problem, which
is equivalent to J(θ) up to constant terms,

θ∗(y) = arg min
θ

Ep̂y
[
KL(p̂x|y ‖ωθ)

]
(13)

For brevity we have introduced the shorthand
p̂x|y ≡ p̂(x | y). For any realization Y = y the KL
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term is convex in θ(y), a well known property of the
exponential families (Wainwright and Jordan, 2003).
Eqn. (13) is then a convex combination of convex func-
tions, thus convexity holds.

The optimal parameter function θ∗(y) is given by the
stationary point condition,

Ep̂y [Eωθ∗ [φ(x, y) | Y = y]] = Ep̂[φ(x, y)]. (14)

This is a weaker condition than the standard moment
matching property of exponential families, which typ-
ically minimizes KL. Under (14) moments of ω(x | y)
must match in expectation w.r.t. the marginal distri-
bution p(y), but need not be equal for any particular
realization Y = y.

4.2 Parameter Function Optimization

Stationary conditions (14) are in terms of a function
θ(y) which is assumed to be parametric. Let η be
parameters of the function, denoted θη(y). Stationary
conditions in terms of parameters η are then,

Epy
[
(Dηθ)

T Eωη [φ(x, y)]
]

= Epy
[
(Dηθ)

T Epx|y [φ(x, y)]
]

where Dηθ is the Jacobian matrix of partial deriva-
tives. If θ(y) is convex in the parameters η then the
optimization Eqn. (13) remains convex.

In principle, the map θη(y) can be any parametric
function, for example a neural network with param-
eters η. Indeed, in related work Chen et al. (2018) op-
timize the MI bound (4) w.r.t. a neural network map
for feature selection tasks. However, such an approach
violates the convexity properties above and leads to
computation that is prohibitive for sequential decision
making tasks.

5 Evaluating the MI Bound

The previous section characterized natural parameters
maximizing the MI bound (7) w.r.t. the auxiliary dis-
tribution. Planning, however, requires the value of this
bound at its optimum. For some models this evalua-
tion is straightforward, but others require estimation.
We begin with a discussion of computing the bound for
complex models. We conclude with a class of models
for which evaluation can be done in closed form, and
corresponds to the standard moment matching prop-
erty.

5.1 Empirical Bound Estimation

To simplify the discussion, we focus on the condition-
ally independent model with PDF (1). Recall the local
approximation p̂(x, y) = q(x)p(y | x), where we drop

explicit time indexing for brevity. The relevant term
in the bound (7) is the conditional cross entropy,

Ep̂[− logω(x | y)] ≈ − 1

N

N∑
i=1

Ep̂y|xi [logω(xi | y)]

where samples {xi}Ni=1 ∼ q(x). Since q(x) is a
tractable distribution, this step can be done efficiently.
Expectation Ey|xi [·] is with respect to the forward
model (likelihood), and can often be computed in
closed-form. For some models, however, this term
must be approximated, and requires simulation of the
forward model. This step is also efficient, assuming a
Bayesian network, but leads to a higher variance esti-
mate. Both estimators are consistent by the LLN.

5.2 Moment Matching Solution

Under some conditions, the MI bound (7) is easily op-
timized and evaluated by standard moment matching
of the auxiliary distribution. One such class occurs
when the marginal p̂(y) is in the exponential family.
Note that p̂(x, y) need not be jointly exponential, for
example the condition holds if y is discrete .

Now, consider the following joint exponential family,

ωη(x, y) = h(x, y) exp
{
ηTφ(x, y)−A(η)

}
.

Furthermore, consider the parameters η∗ satisfying the
moment matching property,

Ep̂[φ(x, y)] = Eωη [φ(x, y)]. (15)

Moment matching, combined with the assumption
that p̂(y) is in the exponential family, implies that the
marginal can be exactly calculated ωη(y) = p̂(y). Us-
ing this equivalence, and rewriting (15), we have:

Ep̂[φ(x, y)] = Ep̂y [Eωx|y [φ(x, y) | Y = y]], (16)

where ωη∗(x | y) = ωη∗(x, y) ÷
∫
ωη∗(x, y)dx.

Eqn. (16) is the optimality condition (14) of the MI
lower bound. This solution also leads to a simple form
of the MI bound (7). By direct calculation, the cross
entropy Hp̂(ωη∗(x, y)) equals,

Ep̂[− log h(x, y)]− ηTEωη∗ [φ(x, y)] +A(η). (17)

For distributions with constant base measure h(x, y)
we have that, Hp̂(ωη∗(X,Y )) = Hωη∗ (X,Y ). By simi-
lar logic for the marginal entropy, and by applying the
entropy chain rule, we have that:

Hp̂(ωη∗(X | Y )) = Hωη∗ (X,Y )−Hωη∗ (Y ). (18)

The l.h.s. is the relevant conditional entropy term from
the MI bound (7). The r.h.s. is the entropy of the
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joint and marginal distributions ωη∗(·) at the optimal
parameters, which is closed form.

To summarize, we have shown one sufficient condition,
namely that p̂(y) is an exponential family, which leads
to efficient evaluation of the MI bound. We further
conjecture that broader conditions exist which lead to
the same moment-matching optimization and evalua-
tion of the variational MI bound.

6 Experimental Results

We demonstrate VIP in a variety of contexts includ-
ing sensor selection, Bayesian experiment design, and
active learning. The primary comparison in most set-
tings is to MCMC inference or exact numerical infer-
ence when possible, along with empirical mean estima-
tion of the MI for planning. In this way, our motivation
is to demonstrate comparable accuracy using more effi-
cient variational methods. For the more complex case
of LLDA we in fact observe sustained improvements
over baseline.

6.1 Sensor Selection

We begin with estimating target position in a network
of sensors, each with fixed position. Due to commu-
nication constraints we can draw measurements from
only a single sensor at each time. At each planning
stage we must draw measurements from the most in-
formative sensor.

We consider estimation in, both, static and dynamic
settings. In both cases we optimize the MI lower
bound over a linear Gaussian auxiliary distribution
ω(x | yt) = N (ayt, σ

2), which can be solved in closed-
form. We compare the impact of inference on predic-
tive accuracy by comparing exact numerical calcula-
tion, variational inference, and MCMC.

Static Estimation. A stationary target has position
drawn from a Gaussian prior x ∼ N (m,σ2). Obser-
vations are drawn from one of K sensors, each with
fixed position lk. Sensor noise is modeled as a two-
component Gaussian mixture model,

y | x; k ∼ w ∗ N (0, v0) + (1− w) ∗ N (x, vk(x)).

The mixture consists of a noise distribution with
fixed variance v0 and an observation model with
noise variance increasing with relative distance:
vk(x) = |lk − x|+ v1.

Dynamical System. We extend the setting to a non-
linear dynamical system frequently used in the sequen-
tial Monte Carlo literature (Kitagawa, 1996; Gordon
et al., 1993; Cappé et al., 2007),

N
(
0.5xt−1 + 25xt−1/(1 + x2t−1) + 8 cos(1.2t), σ2

u

)
.
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Figure 2: Static target estimation. Estimation of a
1D target position in a network of K = 10 equally spaced
sensors. Mean (solid) plus STDEV (dashed) over 20 real-
izations. Left: Variational planning based on EP inference
yields comparable error in state estimate compared to ex-
act inference with empirical MI estimates. ADF inference
yields higher error. Right: Empirical estimates based on
the numerical posterior most accurately estimate MI. VIP
bound gap is consistently lower for more accurate EP pos-
terior estimates as compared to ADF.

To keep consistent with prior work we model observa-
tions as, yt | xt; k ∼ N (x2t/20, vtk(xt)). The variance
function vtk(xt) is identical to our static example. To
demonstrate flexibility additionally replace variational
inference with a particle filter. Fig. 3 demonstrates an
example scenario.

State predictions competitive with empirical.
In both cases VIP produces state estimates with sim-
ilar or better accuracy to empirical planning, depend-
ing on the chosen posterior approximation. In the
static estimation model we find similar accuracy be-
tween exact numerical inference with empirical plan-
ning and EP inference with VIP planning (Fig. 2; left).
In the tracking model we also consider exact inference
with VIP planning, for which median error is lowest.
When comparing particle filter inference VIP and em-
pirical planning accuracy are comparable, with the for-
mer showing slightly lower median error (Fig. 4; left).

Planning is sensitive to posterior accuracy. We
also find that estimates of the state estimate, and of
the MI calculation, are sensitive to accuracy of the
posterior approximation. In the static case we com-
pare against assumed density filtering (ADF), which
is more numerically stable than EP but tends to pro-
duce less accurate posterior approximations. Planning
based on the ADF posterior produces less accurate
state estimates (Fig. 2; left) and higher error MI es-
timates (Fig. 2; right). Similarly, use of particle fil-
ter inference in the tracking model increases error for
both the state (Fig. 4; left) and MI calculation (Fig. 4;
right).

6.2 Gene Regulatory Network

Steinke et al. (2007), and later Seeger (2008), in-
troduced a heuristic approach to sequential experi-
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Figure 3: Nonlinear tracking example in a field of K = 10 equally spaced, stationary, sensors. The best comparison
is to numerical approximation to MI and the posterior distribution (top-center). For reference, we have also included an
oracle which selects the sensor closest to the true target location (left column). In typical cases such as this one, we see
that VIP state error is comparable to empirical estimation under the same posterior approximation. However, VIP shows
lower accuracy when planning is computed against an approximate posterior, in this case particle filtering (PF).

Figure 4: Nonlinear tracking for 20 random tri-
als. Left: Exact inference with variational planning yields
the lowest RMS state error. Particle filter inference with
500 particles and variational planning (PFVI) yields lower
median error compared to MC estimates of information
(MCMI), though wider error quantiles. Right: Again, Ex-
act VI shows the lowest RMS error of the selected sensor
position w.r.t. optimal, whereas PFVI and MCMI both
have higher error, again with PFVI having larger quan-
tiles.

ment design which shares components of our current
method. Their approach relies on EP inference and
related approximations of the MI utility. Using an
example from these papers, we compare VIP for the
discovery of causal gene interactions.

Let x ∈ Rn represent the deviation of n gene ex-
pression levels from steady state. The matrix A ∈
Rn×n represents causal interactions, with sparse en-
tries drawn i.i.d. from a Laplace distribution,

p(A, x) ∝
n∏
i=1

N (ui | aTi x, σ2)

n∏
j=1

Laplace(aij | λ) (19)
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Figure 5: Sparse linear model. Average +/- STDEV
computed for n = 50 nodes over 20 random networks. Left:
AUC for edges with true weights |aij | > 0.1 plotted for
each intervention experiment. VIP shows similar results to
Steinke and Seeger with slight improvement for less than
25 experiments. Right: Average AUC at varying noise
levels are broadly similar to Steinke and Seeger. The dip
at moderate SNR levels may be due to our choice of a
simple approximating family (linear Gaussian).

where ai is the ith row of matrix A. Here u represents
an external control vector (perturbation). Interven-
tions include up regulating ui > 0, down regulation
ui < 0 and no intervention ui = 0 for the ith gene.
Observe that the joint (19) is unnormalized since the
likelihood term is not a normalized distribution of x.

We compare to the variational method of Steinke et al.
(2007) and later Seeger (2008) which maintain a mean
field Gaussian posterior approximation using EP:

q(A) =
∏
i

p
(0)
i (ai)

∏
j

t̃ij(aij).
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Here, p
(0)
i (ai) approximates the base measure

N(ui | aTi x, σ2) and t̃ij(aij) the Laplace factors. Given
past observations D and a new control and ob-
servation pair {x∗, u∗}, maximizing MI is (approx-
imately) equivalent to maximizing Ex∗ [ KL(q′ ‖ q) ],
where approximation comes from the update posterior
q′(A) ≈ p(A | D ∪ {x∗, u∗}). The previous authors ap-
proximate expectation over samples {xk∗} from the pre-
dictive distribution p(x∗ | D, u∗). Since this approach
requires updating the EP posterior q′(A) for each sam-
ple xk∗, which is prohibitive, they instead propose a
non-iterative approximation which only updates the
Gaussian base measure p(0)(A) at each sample.

Similar results to specialized method. We opti-
mize the MI bound over a linear Gaussian approxima-
tion for 20 random trials and report area under the
curve (AUC) for edge prediction (Fig. 5; left). Steinke
and Seeger approximate MI by updating only the base
measure p(0), which involves a moment matching pro-
jection Eq′ [φ(A)] = Ep̂[φ(A)], where p̂(A) is the aug-
mented distribution, which is similar to the moment
matching solution discussed in Sec. 5.2. As a result,
VIP reduces to a solution similar to that of Steinke
and Seeger, and results are comparable for more than
30 interventions. Results remain similar across varying
noise levels (Fig. 5; right), albeit with a slight drop in
accuracy at moderate SNR. We hypothesize that this
intermediate region depends more strongly on good
MI approximations, and that VIP would benefit from
a more flexible approximating distribution than the
linear Gaussian one chosen.

Improved AUC for fewer interventions. De-
spite similarity in the methods, we do observe small
improvements at early interventions. In particular,
Steinke and Seeger observe that their proposed experi-
mental design approach performs poorly for few inter-
ventions and propose a hybrid method which randomly
selects the first 20 interventions, then performs infor-
mation guided selection thereafter. Random selection
still performs well in this regime.

6.3 Active Learning for Labeled LDA

Labeled LDA (LLDA) is a semi-supervised extension
of LDA (Blei et al., 2003). For K topics, D docu-
ments d = 1, . . . , D, and Nd words per document, the
standard unsupervised LDA model is given by,

θd ∼ Dirichlet(α) Topic proportions

ψk ∼ Dirichlet(βk) Topics

zdn | θd ∼ Cat(θd) Topic Labels

wdn | zdn, ψ ∼ Cat(ψzdn) Words

As shown in Fig. 6, LLDA introduces semi-supervised
annotations for each word (Flaherty et al., 2005). We

Figure 6: Labeled LDA graphical model augments stan-
dard LDA with semi-supervised annotations ydn shown as
shaded dashed nodes. Each stage of active learning se-
lects unlabeled item (d, n) maximizing mutual informa-
tion I(Ψ, Ydn) between topics Ψ and annotations Y , as in
Eqn. (20).

model annotations as noisy observations of the true
topic assignment,

ydn | zdn ∼ Cat(πzdn).

This choice ensures interpretable topics as the pos-
terior concentrates on a preferred ordering of labels.
Other supervised LDA variations exist (Ramage et al.,
2009) but we do not consider them here.

Our evaluation uses the “bars” dataset (Griffiths and
Steyvers, 2004) where topics can be visualized as a set
of vertical and horizontal bars (see Fig. 7). To amplify
the effect of informative annotations we model a rare
topic with a non-symmetric Dirichlet prior over topic
proportions: α = (0.05, 1, 1, . . . , 1)T .

Active Learning At each learning stage t the planner
selects an annotation yd∗n∗ maximizing posterior MI:

(d∗, n∗) = arg max
(d,n)

I(Ψ, Ydn | W,Yt−1), (20)

with observed annotations Yt−1 and W the corpus of
words. Eqn. (20) is an instance of the annotation
model (Sec. 3.3) as integration over nuisance variables
induces dependence among annotations. We choose a
softmax auxiliary distribution:

ω(y = k | ψ) ∝ exp(wTk vec(ψk) + w0k),

which has a number of beneficial properties: first, it
ensures convexity of the planning objective (20) in the
parameters w (Sec. 4). Second, the marginal distribu-
tion p(y) is in the exponential family (discrete) thus
ensuring simple evaluation of the MI bound (Sec. 5).

Lower topic error compared to MCMC. We com-
pare VIP using EP inference (Broderick et al., 2013) to
empirical MI planning based on Gibbs samples. Ob-
serve that MI estimates require averaging over topic
samples, and thus must account for topic label switch-
ing. We found that any reasonable alignment (e.g.
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Gibbs + Random Gibbs + Empirical EP + VIP

Figure 7: Learned LLDA topics from a corpus of D = 50 documents, each with Nd = 25 words drawn from the bars
topics with a W = 25 word vocabulary. We model Topic 0 as a rare topic (see text). Gibbs estimates are averaged over
1000 samples drawn from parallel chains. Topic estimates under EP inference with selection using VIP (right) are broadly
similar to Gibbs when using empirical MI estimates for selection (center), though at reduced computational cost. Gibbs
estimates have higher noise in low probability regions. Annotation based on random selection (left) performs poorly
regardless of the inference method – Gibbs shown.

Figure 8: Total variation (TV) error for all topics on
the “bars” dataset across 10 random trials. Variational
planning with fully parameterized softmax shows consis-
tent improvement over Gibbs on average (solid). Gibbs es-
timates show tighter standard deviation (shaded) for plan-
ning based on MI estimates. Both inference methods per-
form similarly for random selection.

MAP) resulted in poor estimates (Stephens, 2000). We
instead relabel Gibbs samples to minimize absolute er-
ror w.r.t. the true topics, which would not be feasible
in practice. Fig. 8 reports total variation (TV) error

across topics
∑
k ‖ψk − ψ̂k‖1, based on the posterior

mean estimate ψ̂. We found that increasing from the
reported 1000 Gibbs samples did not lead to significant
improvements. We instead suspect that poor MCMC
results are due to a combination of MI estimator bias
and local optima.

7 Conclusion

We have introduced VIP, an approach to sequential
decision making which leverages the efficiency of vari-
ational approximations to produce high quality deci-
sions at timescales that would be infeasible with ex-
isting sample-based methods. Using the same basic
methodology we have shown that VIP can be easily
adapted to a variety of contexts, and performs compa-
rably to sample-based approaches requiring more com-
putation and to methods specialized for a particular
problem, as in the regulatory network example. We
look forward to future applications of VIP in domains
where decisions are time-sensitive.
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