
2333-9403 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2018.2830181, IEEE
Transactions on Computational Imaging

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 14, NO. 8, AUGUST 2015 1

Information-Driven Adaptive Structured-Light
Scanners

Guy Rosman, Daniela Rus and John W. Fisher III,

Abstract—Sensor planning and active sensing, long studied in
robotics, adapt sensor parameters to maximize a utility function
while constraining resource expenditures. Here we consider
information gain as the utility function. While these concepts
are often used to reason about 3D sensors, these are usually
treated as a predefined, black-box, component. In this paper we
show how the same principles can be used as part of the 3D
sensor.

We describe the relevant generative model for structured-
light 3D scanning and show how adaptive pattern selection can
maximize information gain in an open-loop-feedback manner. We
then demonstrate how different choices of relevant variable sets
(corresponding to the subproblems of locatization and mapping)
lead to different criteria for pattern selection and can be com-
puted in an online fashion. We show results for both subproblems
with several pattern dictionary choices and demonstrate their
usefulness for pose estimation and depth acquisition.

Index Terms—Depth sensors, structured-light, information-
gain, sensor planning, 3D scanners, uncertainty, simultaneous
localization and mapping, generative models.

I. INTRODUCTION

Range sensors have revolutionized computer vision in recent
years, with commodity RGB-D scanners allowing us to easily
tackle challenging problems such as articulated pose estima-
tion [1], Simultaneaous Localization and Mapping (SLAM)
[2], [3], [4], and object recognition [5], [6]. Reasoning about
3D sensors often utilizes simplified, black-box, models of the
acquisition process, that are only loosely coupled to the photo-
metric principles behind the design of the scanner. 3D sensors
abstract a significant complexity of the relations between the
acquired images and the underlying scene behind them, giving
us encapsulated representations of the environment that are
simple and convenient to exploit in higher-level processes
[7]. Given such intermediate representations, we can employ
computer vision algorithms to understand the world and act
based on the resulting understanding of the scene.

Significant efforts have been devoted to optimal planning
and deployment of sensors under resource constraints, e.g., on
energy, time, or computation. Such sensor planning has been
employed in many aspects of vision and robotics, including
positioning of 3D sensors and cameras, as well as other active
sensing problems, see for example [8], [9], [10], [11], [12],
[13], [14]. The goal is to focus sensing on the aspects of the
environment or scene most relevant to the specific inference
task, taking all considerations into account.
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Fig. 1. Illustration of patterns selection. Each row illustrates another turn of
pattern selection. For each pattern, the information gain is estimated, shown
by different border color around each pattern, and the different stem heights
in the plot on the left. Black arrowheads and red circles in the plot mark
the selected pattern at each turn. Note the different patterns selected, and
diminishing information gain over time. Bottom row: Left: the proposed open-
loop w/ feedback 3D scanning with pattern selection flowchart. Right: the
project/camera system used for 3D scanning.

However, the same optimality principles are generally not
used to examine the operation mode of the 3D sensor itself,
and the 3D representation hides properties of the acquisition
process that could be leveraged to tailor the acquisition process
for the specific task at hand. In reality, the true measurements
in the system are acquisitions by a photosensitive sensor,
and not the 3D representation. Parameters of the sensors,
including any active illumination, should be considered as
action parameters (in the decision-theoretic sense [15]) to be
optimized and planned.

In this paper we focus on temporal structured light 3D
scanners [16], [17] as an example for 3D sensing. In structured
light 3D scanners, the trade-offs of temporal speed, robustness,
and accuracy are well known – for example, Kinect’s single
shot patterns afford speed and lack of motion artifacts, but lack
in spatial accuracy, whereas Gray-code temporal multiplexed
patterns offer accuracy but lack speed and are sensitive to mo-
tion artifacts. We reformulate adaptive selection of patterns in
structured-light scanners as the following resource constrained
sensor-selection process, affording us an adaptive approach
that can leverage context and reason about these tradeoffs.
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We treat the choice of the projected pattern at each time as
a planning choice, and the number of projected patterns as
a resource. Our goal is to minimize the number of projected
patterns while maximizing the task-specific information gain.
We compute information gain from the (predicted) observation
of the scene given previous observations and a new proposed
projected pattern. This allows us to pick the next pattern,
project it, and update our world state estimate in an online
fashion, corresponding to the greedy selection regime in sensor
selection, as is illustrated in Figure 1.

The contributions of this paper are: (i) We devise a prob-
abilistic generative graphical model for the 3D scanning pro-
cess, depicted in Figure 2. We estimate mutual information
between the observed images and variables in the model in
Algs. 1,3. (ii) For the task of range estimation, we demonstrate
greedy open-loop pattern selection for the projector as an
instance of focused active inference [18], in Subsec. IV-A.
(iii) For the task of pose estimation, we show which parts
of the scene are informative, for several cases of interest, in
Subsec. IV-B.

We have presented the concept of focused active inference
in 3D scanners in a recent conference submission [19]. We
now extend upon this submission with addition discussion of
the model and its components, as well as empirical exploration
of the model’s relation to more elaborate illumination models,
describing the implication to the potential gain from active
sensing. We moreover give a complete description of the
algorithms involved and describe the use of active sensing as
open-loop-with-feedback control.

We note that sensor planning is an instance of experimental
design, studied in a variety of domains, including economics
[20], medical decision making [21], robotics [22], [23], and
sensor networks [24], [25], [26], [27], [28], [29]. While many
optimality criteria have been proposed, one commonly used
criterion is information gain. It is well-known that selection
problems have intractable combinatorial complexity. However,
it has been shown that tractable greedy selection heuristics,
combined with open-loop feedback control [30] guarantee
near-optimal performance [26], [31], due to the submodular
property of conditional mutual information (MI). We therefore
focus on this approach of greedy pattern selection in this paper.
This assumes one can evaluate the information measure for the
set of sensing choices (patterns in our current context). We
derive a physics-based model for structured-light sensing that
simultaneously lends itself to tractable information evaluation
while producing superior empirical results in a real system.
We also characterize the informational utility of a given
pattern (or class of patterns) in the face of varying relevant
versus nuisance parameter choices [18]. In the process, we
demonstrate that the value of a given structured-light pattern
changes depending on the specific inference task. We exploit
commonly available graphics hardware to efficiently estimate
the information gain of a selected pattern and reason about the
effect of the dependency structure in the probabilistic model.

The choice of parameterization for the latent variables in
the model is crucial for efficient information gain estimation.
This can be seen in the common tasks of range sensing and
pose estimation. We consider these two important applications

and demonstrate how a careful choice of the scene and scanner
representation lends itself to estimation of conditional mutual
information.

Good inference and uncertainty estimation hinge on find-
ing a scene parameterization that affords easy and efficient
computation. Such a representation should model the sensing
process faithfully, and ideally be suited to inference and
uncertainty estimation in several tasks. Within a single model,
this ability is often achieved by inferring only a subset of
variables, or computing the focused mutual information [18]
with respect to them. Choosing parameterizations of the scene
which lend themselves to tractable uncertainty estimation,
and further processing along a machine vision pipeline has
been intensely studied in the robotics community, with several
choices each having its own advantages and disadvantages for
several applications. We explore in this paper some of these
tradeoffs in the context of 3D reconstruction and computer
vision from range scanners.

More concretely, our contribution is in defining a framework
for inference and uncertainty estimation in active illumination
3D scanners. We first describe the model on which we base our
framework, and then detail several techniques for estimating
the mutual information between relevant variable sets, such as
depth and pose, within this model. A significant difference
of this problem compared to the classical geometry-based
reasoning of information planning is the introduction of a
much more complex set of nuisance variables. We discuss
this important point as we develop our model, which captures
both the geometry and photometry aspects of structured-light
reconstruction in sufficient detail, allowing both inference and
uncertainty-based sensory selection of scanner patterns.

In the field of structured-light reconstruction, several studies
have suggested adaptive scanners (see for example [32], [33],
[34], [12], [45]), and energy-efficient designs [35]. Similar to
the design of fixed-sequence scanners, they trade off acquisi-
tion speed (and sensitivity to motion artifacts), robustness to
various modes of corruption, and accuracy, but often fail to
take into account the distribution of posterior uncertainty in
illumination and geometry, or to generalize to multiple pattern
libraries. In this paper we show how given a generative model
for the sensing process we can obtain an adaptive scanner
for various tasks, constraints, and pattern choices, forming
a decision-theoretic purposive [36] 3D scanner that can be
adapted to specific tasks and relevant sets for inference.

We formulate 3D acquisition as a probabilistic inference
process within a detailed model for the scene and sensor in
Section II. We discuss methods of representing uncertainty
in a manner appropriate for a specific task. In Section III
we show how MI estimation can be combined with standard
approaches for reconstruction in several cases of interest, and
demonstrate the integration of MI estimation into a structured-
light scanner. Section IV demonstrates the proposed system in
several experiments that exemplify the usefulness of the pro-
posed approach. Section V concludes the paper and describes
possible new directions.
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Fig. 2. Proposed model for classification with active illumination.

II. MODELLING ACTIVE 3D COMPUTER VISION

We now describe the generative model used for pattern
selection and inferring depth. We adopt a model that describes
structured-light and time-of-flight imaging devices and stan-
dard cameras or camera-and-projector systems. Estimation of
information gain is central to our method and thus impacts
the choice of parameterization. We emphasize that approxi-
mations we use for estimating information gain and choosing
patterns generally do not carry over when we compute the
reconstruction. To our knowledge, this is the first analysis of
active information-based planning in this setting. The model
parameters are roughly partitioned into agent pose, geometry
of the scene, and photometry of the scene. This is described
in Figure 2, with the notation below:

• A is the global scene appearance, assigning an intensity
model to each geometry element in G. For the case
of Lambertian illumination, this includes two random
variables a(x), b(x) that describe the photometry of the
visible surface with respect to the perceived projector illu-
mination. Their mean and standard deviation parameters,
a0(x), b0(x), σa(x), σb(x), are incorporated into A.

• G is a global scene representation. For simplicity’s
sake, we chose a range image with range/height pix-
els distributed i.i.d with a Gaussian prior per pixel,
r(x) ∼ N

(
µr, σ

2
r

)
, x ∈ R2, and our scene

representation is the projection with that range image
from the camera’s point of view at Θ = Id. This
representation is further described in Section III.

• Θ denotes the scanner pose – which we define as the
transformation between the camera and the scene. We
assume it to be distributed as a Gaussian in the tangent
space around (Id,0) in the Lie-group SE(3). For the
case of range estimation, Θ can be fixed at the identity,
specifying a default gauge for the problem.

• Gl is the local (viewpoint) scene representation. In our
case, it is the rotation of elements of G according to Θ,
using a deterministic function.

• Al(x) ∈ R2 is the local appearance model. For each
element in the local geometry Gl we attach its perceived
illumination model, a, b, sampled from the correspond-

ing element in A. We note Al, Gl are not determin-
istic functions of A,G,Θ due to unmodeled aspects
(e.g.occlusions). The geometry and pose determine cam-
era and projector coordinates at each pixel.

• A represents the action space in a sensory-planning
notation. In our case it is the choice of pattern.

• Ip at image pixel x is the projection of the projector
patterns based on the reprojected point ΠP

r,Θ(x). While
this can be a random variable, in practice the noise levels
of the projector light are negligible compared to the
camera noise η.

• Ic(x) = a
(
ΠC
r,Θ(x)

)
Ip (x) + b

(
ΠC
r,Θ(x)

)
+ η(x). Note

that we assume the sampling process to be accurately
taking us from Ic(x) to a value of Ip which we, in
practice, sample bilinearly. Also, note that given past
image measurements, Ic is still Gaussian. This allows
us to compute current estimates for Ic without having to
perform complex operations such as matrix inversion on
parallel hardware.

• η captures the pixel noise, as well as additional phe-
nomenon unaccounted for (such as occlusions). In the
examples we show we used additive Gaussian white noise
with the same parameter for all pixels.

Computing the operators ΠC
r,Θ(x),ΠP

r,Θ(x) involves first
computing a world-coordinates representation x3 of the geom-
etry G at each geometry element x. In order to compute x3

in our representation, we back-project x to a distance of r(x)
from the canonical viewpoint (chosen in our case to coincide
with that of the camera at rest gauge).

x̃ =K−1
camx

3 (1)

x3 =

r(x)

 (x̃)1

(x̃)2

1


√

(x̃)2
1 + (x̃)2

2 + 1
,

where we abuse the notation of x for its homogeneous coordi-
nates representation. We then compute the rigid transformation
x̄3 = TΘ(x3), followed by projection onto the camera and
projector’s viewpoints to form ΠC

r,Θ(x),ΠP
r,Θ(x). Based on

Π
(·)
r,Θ(x), we sample Ic,Ip, and the appearance coefficients

with bilinear interpolation.
The generative graphical model of Figure 2 depicts the

relationships of the variables. Observations are denoted by
shaded circles, latent variables by white circles, and parameters
by diamonds. As shown in Figure 2, the model factorizes as

p (A,G,Θ, Al, Gl, η, Ic, Ip;A) (2)
= p (Θ) p (A) p (G)∏

l

p (Al|A,Θ) p (Gl|G,Θ)∏
l,x

p (Ic|Al, Gl, Ip, η) p (Ip|Gl,Θ;A) p (η) ,

where the first line includes prior terms for the scene. The
second incorporates projection onto a specific viewpoint of the
projector images and world model, and the last line involves
sensor image rendering, and noise realization.
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We note that depending on the inference task, various latent
variables alternate their roles as either relevant or nuisance.
We choose patterns in order to maximize focused information
gains [18], i.e., information regarding the relevant set, rather
than information of the non-relevant, or nuisance, variables.
We follow the notation of [18] where R ⊆ U denotes the
relevant set and U denotes the set of all nodes. Nuisance
parameters have certainly been considered in existing 3D re-
construction methods. Examples include the standard binarize-
decode-reconstruct approach for time-multiplexed structured-
light scanners or the choice of view-robust descriptors for
3D reconstruction from multiple views [37]. The utility of
the generative model is that nuisances are dealt with in a
mathematically-consistent fashion.

A. Inference and Sensor Planning in 3D Vision
We consider several inference tasks of interest in 3D com-

puter vision and the pattern selection issues which arise from
them. For example, inference of Gl given Ic, Ip,Θ amounts
to 3D reconstruction, where Gl is assumed to approximate
G and Al is treated as a nuisance. Previous methods adopt a
probabilistic model for improving structured-light reconstruc-
tion [38], [39], but assume a predetermined set of patterns.
Alternatively, SLAM methods incorporate inference steps for
the geometry and pose parameters alternating between pose
(Θ) updates conditioned on the geometry (Gl) and vice-versa.
Updates to the 3D map may be posed as inference of G given
Gl,Θ. In all cases, limiting assumptions regarding occlusions,
the relation of appearance parameters and 3D geometry, and
the relation between different range scans of the same scene
are typically invoked.

For structured-light acquisition, one can associate pixels in
Ic and Ip given the range r at each pixel x (which is a choice
for Gl) and the pose Θ. The set of pixels in Ip are obtained
via Πr,Θ (x) ∈ R2 by back-projecting x into the 3D world
and projecting it into the projector image plane. The relation
between the intensity values of these pixels can be given as

Ic(x) = a(x)Ip (Πr,Θ (x)) + b(x) + η(x), (3)

where a, b depend on the ambient light, normals, and albedo
of the incident surface. For sufficiently large photon count,
η is assumed Gaussian accounting for sensor noise and un-
modeled phenomena such as occlusions and non-Lambertian
lighting components. Utilizing time-multiplexed structured-
light, plane-sweeping [39] enables efficient inference of Gl
from Ic, Ip, and incorporation of priors on the scene structure
G. For our purposes, one can assume a fixed pose, and
limit the inference to estimation of Gl. Figure 3 provides
an example of Ic, Ip, a, b, r for a reconstructed scene with
random smoothed patterns (as described in Subsection IV-A).
The resulting 3D reconstruction is superior to the classic
binarize-decode-triangulate pipeline with respect to robustness
to artifacts such as specularities and low SNR conditions.

Our goal is to efficiently compute the relevant mutual
information quantities IA (xR; IC) for different definitions of
R, and choices from the set A, alternately considering Θ, G,
and A as the relevant variable set xR. Nonlinear correspon-
dence operators (back-projection and projection) linking Ic, Ip

complicate dependency analysis within the model and preclude
analytic forms. We exploit common graphics hardware for a
straightforward and efficient sampling approach that follows
the generative model.

B. Photometric Entropy in Active Illumination 3D Scanning

When describing 3D scanner, the interplay of photometric
models and the reconstruction can lead to improved results
[40], [41] and warrants examination. In Equation 3, coeffi-
cients a and b capture illumination variability. A slightly more
detailed description of the photometric model is given by a
Lambertian model,

Ic = ρ
1

rp(x)2
〈n(x), l〉 Ip(πr(x)) + ρIamb + η(x). (4)

Here, ρ = ρ(πr(x)) is the albedo coefficient, n(x) is the
surface normal at a given image location x, l is the projector
direction, and Iamb is the ambient lighting. rp is the distance
from the projector, and Ip(πr(x)) is the projector intensity.
Comparing this model with Equation 3, we can approximate

a(x) ≈ ρ 1

rp(x)2
〈n(x), l〉 ; b(x) ≈ ρIamb. (5)

While we can use the model of Equation 4 for inference,
additional variables make inference less stable, and often
require more observations for the same certainty in the
variables of interest. We therefore use the simplified model
from Equation 3, which have proven itself in structured-light
reconstruction (see, for example, [39]).

However, we can still use the model of Equation 4 to
explore the contributions of the different factors, similar to an
ablation study [42]. Observing the pixel-wise intensity entropy
associated with different simplifications of this model provides
us with intuition on the relative importance of various factors
and gives us some bounds on how much information can be
gained from modification of the patterns. Specifically, when
looking at different patterns, we can contrast a pattern that
changes in an i.i.d manner in the image plane to a fixed pattern
that is deformed according the the surface geometry and
projection operator. The difference in image entropy between
the two hints at the possible information gain achievable
by better selection of patterns, and bounds the maximum
information gain per pixel. we perform a simulation of the
perceived illumination and measure the per-pixel entropy. We
use a Lambertian illumination model as in Equation 4. The
range of the surface affects the illumination through several
terms in the equation: notably, there is (i) intensity attenuation
of the projector due to distance, (ii) effect on the normal, and
the (iii) texture change due to the triangulation. In addition,
there is (iv) the projector intensity in a specific projector ray
Removing each of the factors from the model in Equation 4,
we get an estimate of the contribution of each factor. We
assume a Markov Random Field (MRF) model for the surface
depth with uniform weights, and a constant surface albedo.
The estimated entropy values are shown in Figure 4, for
different variability levels of the range image, and at different
base ranges.
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(a) (b) (c) (d) (e)

Fig. 3. Left-to-right: a) Ic, b) coefficients a and c) b from Equation 3 for the MAP-estimated range d) Ip in the camera image plane, e) the range image
in millimeters. Note how parameter b captures scene illumination, whereas parameter a captures the reflectance coefficient of the surface with respect to the
projector.

Ideally, a pattern should utilize at each region the full
intensity range to probe the full range of geometric uncertainty.
The difference between variation sources (iii, black curves)
and (iv, blue curves) hints at the maximal achieved variation
in the image intensity for patterns designed to investigate
our specific range uncertainty at each pixel. It demonstrate
how by varying the illumination according to the current
uncertainty, we can produce patterns that explore each area
more efficiently. In our examples, the average range of the
surface is set to be either 20cm, 1 meter, or 10 meters, with
range uncertainty of up to 10cm. The ratio of ambient light
intensity to maximum projected pattern variation is 1. We note
that at in our tests, at reasonable ranges the normals effect on
the intensity dominates that of the distance attenuation. It is,
however, a standard assumption to avoid the effects relating to
surface normals in structured-light and time-of-flight scanners.

We further note that at larger distances, the change due
to geometry’s effect on the pattern diminishes, requiring a
larger disparity between the projector and camera, or higher
resolutions of the projector, patterns, and cameras. This is a
known limitation in the design of structured-light scanners,
and can be seen in the transition between the 20cm and
10m plots. However, the effect of the change in the projected
pattern dominates other effects, much more than the change in
projector ray-surface location due to the range. This suggests
that by adapting the patterns according to uncertainty in
range, there is a lot to be agained in these cases. Integrating
photometric normal-based reconstruction and code could be
done within the model we propose, but it beyond the scope of
this work. Directly modifying the pattern leads to much higher
entropy compared to displacing a fixed pattern due to changes
in the range image. It hints at the amount of modification
for P (Ic|r), P (Ic) possible via different choices of patterns,
assuming full knowledge of the scene, and justifies adapting
the patterns based on known world model and uncertainty.
The viewpoint we take here treats pattern selection as an
experimental design problem, as we will demonstrate. We note
that theoretically, an infinitely dense pattern would yield the
most variation. Lacking an estimate of the uncertainty in depth,
structured-light scanner pattern are often designed to accomo-
date multi-scale search over the range, or other techniques
to guarantee the range is uniquely identified, see for example
standard grey-code striped light. Our simulation highlights the
role of choosing the patterns according to the scene model and
uncertainty — in most cases of structured-light scanning, we

already have an estimate of the scene parameters from previous
time frames, and this prior knowledge should be used.

III. ESTIMATING UNCERTAINTY IN 3D SCANNERS

We present two important cases of estimating mutual infor-
mation gain for pattern selection in structured-light scanners.
In each, we consider inference over different subsets of
variables, and the mutual information between them and the
observed images. Differing assumptions on the fixed/inferred
variables and dependency structure in the image formation
model lead to different algorithms for MI estimation given
as Algorithms 1 and 3.

An important observation is that given the pose, range
measurements and camera image pixel values can be approx-
imated as an independent estimation problem per-pixel (here
we model the effect of surface self-occlusions as noise). This
provides an efficient and parallelizable estimation procedure
for the case of range estimation. This assumption has been
exploited in plane-sweeping stereo, and inference of structured
light with priors [39]. We now utilize it for MI estimation.
We note that even where the inter-pixel dependency is not
negligible, we can compute an upper bound for the information
gain. For example, for the case of pose and range estimation
we obtain

I(Ic; Θ, r) =H(Ic)−H(Ic|Θ, r) ≤ (6)∑
x

H(Ic(x))−
∑
x

H(Ic(x)|Θ, r(x)) , Î(Ic; Θ),

where Î is the pixel-wise mutual information between the
sensor and the inferred parameter.

A. Range Image MI Estimation

We start with the simple, yet instructive, case of estimating
mutual information between the scene geometry and the
observed images given a known pose, for predetermined set of
illumination patterns. Here, inference is over Gl as represented
by the range at each camera pixel r ≡ r(x). We assume
a Gaussian prior for a and b, with means 1,0, and standard
deviation large enough to be uninformative.

We compute the pixel-wise mutual information individually
and sum the results. In this subsection, we assume a determin-
istic choice of pose; the patterns are deterministic throughout
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Fig. 4. Left-to-right: The per-pixel image entropy as at a range of 1000cm, 100cm and 20cm, for different levels of surface range variation. Different curves
in each plot represent the predicted entropy with and without range attenuatation, and with either no pattern, projected pattern intensity change based on the
scene geometry only, or a pattern drawn directly in the image plane, representing a maximally varying pattern. While attenuation can have an effect, it is small
compared to the pattern’s disparity contribution. The maximal entropy due to changing the patterns is higher than the mere change in pattern due to different
intersection with the surface, suggesting a stronger possible signal for infering the range for patterns designed with the specific range uncertainty in mind.
As can be seen in the leftmost plot, the small disparity of the projector and long range make the geometry-based variation in the pattern ineffective, which
demonstrates the limitations of structured light scanners at a long range with limited projector and camera resolutions and small projector-camera baseline.

the paper, and hence omitted from the notation for I. The
mutual information between Ic and Gl given θ,Ip is given by

Î (Ic;Gl|θ) =
∑
x

I (Ic(x); r(x)|θ) (7)

=
∑
x

EIc(x),r(x)|θ

[
log

p(Ic(x)|r(x), θ)

p (Ic(x)|θ)

]
.

While computing p(Ic(x)|r(x), θ) is straightforward, we are
still forced to estimate p(Ic(x)|θ), which can be done by
marginalizing over r according to our posterior estimates,

p(Ic(x)|θ) = Er[p (Ic(x)|r(x), θ)]. (8)

For each sample of θ, r, we can then compute the log of the
likelihoods ratio, and integrate it. We note the existence of
alternatives such as using GMMs or Laplace approximations,
for efficient implementation.

We perform one sampling loop in order to estimate p(Ic|θ).
We then use another set of samples in order to estimate
Î (Ic;Gl|θ). Algorithm 1 describes computation of the MI gain
for frame T .

Since a, b, η(0..T ) are all are assumed to be Gaussian
conditioned on r, p

(
a, b, I

(t)
c |I(0...t)

p , I
(0...t−1)
c

)
is Gaussian.

We can compute the pdf of a, b and I
(T )
c given I

(0...T )
p

and I
(0...T−1)
c , by conditioning on each image t at a time,

computing p
(
a, b, Itc|I0..t−1

c

)
for each t = 0..T iteratively.

This allows fast computation on parallel hardware such as
graphics processing units (GPUs), without explicit matrix
inversion or other costly operations at each kernel.

Online Range Estimation: This observation of structure
also lends itself to approximate online updates of the range
estimation after each pattern selection and projection, forming
the update step in Figure 1, by updating a posterior distribu-
tion of each pixel’s range value. This could be done either
explicitly for a set of range values, or by estimating posterior
likelihoods after each image and then refitting a Gaussian to
these estimates, as described in Algorithm 2. In this algorithm,
the update/correction step, once a new pattern was projected, is
done by updating per r value the distribution of a, b, assumed
to be Gaussian. This essentially does a plane-sweeping update
per new image received, yet tracks the effect of previously

seen images on the estimated photometric coefficients’ dis-
tribution. A Gaussian assumption of a, b, and the Gaussian
assumption on ηT allows a simple analytic update by looking
at a, b, Ic and using the expression for conditional distributions
in a multivariate Gaussian vector. Full treatment of efficient
iterative approaches for time-multiplexed structured light range
estimation are beyond the scope of this paper.

Algorithm 1 MI estimation / pattern selection for range image

Input: a set of candidate patterns Îp to be projected as Îtp,
past projected patterns I1...(t−1)

p and observations I1...(t−1)
c

Output pattern pmax that will maximize average informa-
tion gain on range image.

1: for pattern p, in each pixel x do
2: for samples i = 1, 2, . . . , Nhist do
3: Sample a range value for x according to p(r).
4: Raytrace I1..(t)

p , sample I1..(t−1)
c . Compute the statis-

tics of a, b, I(t)
c conditioned on previous image mea-

surements I1..(t−1)
c .

5: Compute probability p(I(t)
c |r).

6: Update the estimated per-pixel histogram, p(I(t)
c ).

7: end for
8: for samples i = 1, 2, . . . , NMI do
9: Draw a new range value for x according to a proposal

distribution p(r).
10: Raytrace I1..(t)

p , sample I1..(t−1)
c . Compute the statis-

tics of a, b, I(t)
c conditioned on previous image mea-

surements I1..(t−1)
c .

11: Compute probability p(I
(t)
c |r), estimate

log
(
p(I(t)c |r)
p(Ic)

)
.

12: Update the estimated mutual information.
13: end for
14: end for
15: Pick pattern pmax with maximum average MI over the

image. Set Îtp to be pattern pmax.
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Algorithm 2 Open-loop-with-feedback adaptive range estima-
tion

Input: a set of candidate patterns, initial range and
intensity estimates

Output update range estimates at each time
t.

1: for t = 1, 2, . . . , . . . do
2: Compute MI values using Algorithm 1, selecting opti-

mal pattern Itp
3: Project selected pattern Itp, acquire image Itc
4: Use plane sweeping over r to update posterior proba-

bility of r, a, b:
5: for r = 1, 2, . . . , . . . do

Update the posterior distribution of a, b, assuming
Gaussian distribution with previously estimated val-
ues as prior.

6: end for
7: end for

B. Pose MI Estimation with Structured-Light

A second important case we explore is typical of pose esti-
mation problems, where we try to infer a low-dimensionality
latent variable set with global influence, in addition to range
uncertainty. In 3D pose estimation, we usually estimate Θ
given a model of the world G.

In visual SLAM, G,A,Al are commonly used to infer
Θ, Gl, either as online inference [3], or in batch-mode [43],
where usually a specific function of the input (feature locations
from different frames, or correspondence estimates) is taken.
In depth-sensor based SLAM, the range sensors obtain a
measurement Gl under some active illumination. Θ is then
approximated from G,Gl. Unlike the usual usage of 3D
sensors for generating a range map and then using it within
a 3D SLAM algorithm, this allows direct posterior update of
the pose parameters given the projector patterns and acquired
camera image, before a complete range image can be formed.

We now describe computation of the MI between the pose
and the images. As before, we parameterize Gl by r(x), and
given (Θ, r) we re-establish a correspondence between Ip
and Ic. This is done by computing a back-projected point x3

j

(denoting it is a 3D point), transforming it according to Θ to
get x̄3

j , and projecting x̄3
j onto the camera and projector image.

A similar situation would arise where inferring a class variable,
where instead of merely inferring Θ we also infer a categorical
variable C that determines the class of the observed object.
Here too, we can still use the following observations: (i) given
the pose parameters, the problem can still be approximated as
a per-pixel process – this assumption underlies most visual
servoing approaches. (ii) the pose parameter space is low-
dimensional and can be sampled from, as is often done in
particle filters for pose estimation. We can therefore write

I (Ic(x); Θ|Gl) = EIc(x),Θ,r

(
log

P (Ic(x)|Θ)

P (Ic(x))

)
, (9)

where as before, P (Ic(x)|θ) is computed by marginalization
over r(x). This procedure is detailed as Algorithm 3. When
computing p(Ic(x)|Θ), p(Θ) can be conditioned on previous

Algorithm 3 MI estimation / pattern selection for pose esti-
mation

Input: a set of candidate patterns Îp to be projected as Îtp,
past projected patterns I1...(t−1)

p and observations I1...(t−1)
c

Output pattern pmax that will maximize information gain
on pose θ.

1: for pattern p, in each pixel x do
2: Set Itp to be pattern p
3: for samples i = 1, 2, . . . , Nhist do
4: Draw pose sample θi, compute Tθi
5: for range sample r(x), from Nr samples do
6: Back-project x3, compute x̄3 = Tθi,r (x).
7: Project x̄3 and sample I1...t

p , sample I1...(t−1)
c .

8: Compute the statistics of a, b, Itc conditioned on
previous image measurements I1..(t−1)

c and r(x).
9: Update the estimated per-pixel histogram, P (Itc)

10: end for
11: end for
12: for samples i = 1, 2, . . . , NMI do
13: Draw pose sample θi and associated transformation

Tθi
14: for range sample r(x), from Nr samples do
15: Back-project x3, compute x̄3 = Tθi,r (x).
16: Project x̄3 and sample I1..(t)

p , sample I1..(t−1)
c .

17: Compute a, b, Itc estimates conditioned on previous
image measurements I1..(t−1)

c , and r(x).
18: Estimate log

(
P (Itc|a,b,Ip,Tθi )

P (Itc)

)
.

19: Update the mutual information gain estimate.
20: end for
21: end for
22: end for
23: Pick pattern pmax with maximum MI sum over the image.

Set Îtp to be pattern pmax

observations, and sampled from the current uncertainty esti-
mate for the pose and range.

We note that when sampling the pose, different variants of
the range images can be used, allowing us to marginalize w.r.t.
range uncertainty as well.

When sampling a conditioned image model per pixel, col-
lisions in the projected pixels can occur. While these can be
arbitrated using atomic operations on the GPU, the semantics
of write hazards on GPUs are such that invalid pixel states
can be avoided, and in practice there was no need to use
atomic operations. Furthermore, to allow efficient computation
on the GPU, we must consider memory access patterns. In our
implementation we compute proposal image statistics given θ,
and then aggregate the contribution into the accumulators for
the mutual information per pixel.

Online Pose Estimation: In the case of range estimation,
one can use the observed images directly to update a pose
estimate, without reconstructing a range image, similar the
approach shown for range estimation, in Algorithm 2. For
the case of a known map, this simplifies the update step in
Figure 1 to updates of the pose based on the recently acquired
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observations, based on the likelihood of the images, as de-
scribed Subsection III-A, by conditioning on new observations
I

(t)
c as they arrive. For the case where both the map and the

pose are unknown, this can be done, for example, by a Rao-
Blackwellized particle filter [44]. However such estimation is
beyond the scope of this paper.

Extension to classification we could incorporate categorical
variables, including object classes as part of Θ. This requires
merely changing lines 4,14, in Algorithm 3 to sample a
distribution over x̄3

j (θ, C, r) instead of x̄3
j (θ, r). This allows

us to choose patterns for object classification tasks, which is
beyond the scope for this paper.

While sampling the full space of appearance and range
per-pixel is computationally expensive, running the algorithm
without any optimizations on a GPU takes approximately one
second on an Nvidia Quadro K2000.

IV. NUMERICAL RESULTS

We conducted several experiments aimed at giving an intu-
ition for the approach proposed in this paper, and demonstrat-
ing its utility, with several choices of projector patterns and
scenes, including striped light and smoothed random patterns
with both Gaussian foviated, and striped-masked modulation.
In terms of the relevant sets of variables, we have focused
on range sensing and pose estimation. Our priors for photo-
metric and range variables are set to be uninformative unless
otherwise stated.

A. Pattern Choice for Range Sensing

We first demonstrate the setup used. For pattern libraries we
used a set of random patterns generated by smoothing i.i.d.
Gaussian noise with Gaussian filters of various scales, and
striped patterns of the sort used for gray-code structured-light.
While these are chosen to represent both well structured and
weakly structured pattern libraries, other choices of patterns
[45] can be used. They are shown in Figures 6 and 10,
respectively. We used as test objects both fabricated models
with various scales of features, see Figure 6, and coated/raw
wooden art models. The PointGrey Grasshopper II camera
and TI LightCrafter projector used are shown in Figure 1.
Pixel noise standard deviation was about 2.5/255 for most
experiments. We validate the use of the smoothed Gaussian
patterns for reconstruction in Figure 5, demonstrating the
decrease in the average range L2 error measured as we use
more patterns for reconstruction. We use the reconstruction
from a set of 120 patterns as a ground-truth estimate, making
the assumption that the reconstruction is an unbiased estimator,
so that reconstruction using all patterns is considered a ground-
truth.

In Figure 6 we show the MI gain collected over the scene,
averaged over 50 random pattern sequences. The amount of
information gained from the patterns decreases as we add
more patterns, as expected with MI, and surfaces that are
well-illuminated and frontal-facing having faster uncertainty
reduction. We look at the average MI gain per pattern over
various random sequences of patterns, in Figure 7. We high-
light several interesting cases. The first case (which often

occurs in practice) assumes high uncertainty of the range
or the appearance coefficients. The second and third cases
involve less and more certainty in the appearance coefficients
respectively. The fourth case involves having a good initial
guess (std. of 7mm) for the range. As expected, the certainty
of the appearance coefficients increases the MI between the
images and the range. Having a good range prior decreases
the amount of information gained per frame and the overall
MI.

We then proceed to perform selection according to MI gain
based on the proposed model. Although we perform greedy
(pattern at a time) selection, there are bounds guaranteeing the
performance of a greedy vs. optimal selection of the whole
pattern sequence – see [31] for such bounds and the relevant
terminology. In our test we initialize each attempt from a
pair of randomly chosen patterns. At each turn we try ten
randomly chosen patterns and compute their image-range MI.
We pick the the most informative pattern, and contrast this
with a random pattern selection. The MI gains for two scenes
are measured in Table I, collected over ten instantiations of
the selection process.

In one scenario, we modulate the patterns by spatial bands
in the projector’s image plane: 14 bands in the x and in the
y directions with 15 random textures instantiations for each
band, see example in Figure 8(a). We note that modulating
patterns is physically feasible in a real system, and is warranted
when overcoming projector intensity / background illumina-
tion limitations, as discuss, for example, in [46]. From these
we greedily select patterns in ten sequences, and unify them
into 69 unique patterns. The patterns are mostly those that
illuminate the region of interest, as expected by their high MI
gain. The region of interest is defined as the silhoutte of an
object (the hand) in the image, and serves as a relevant set to
focus the sensing on, with an intuitive definition. A similar test
was done with patterns modulated by an exponentially, radially
decreasing envelope, illuminating local regions of the projector
field of view at each time (see Figure 8(d)). 20 random patterns
are taken, modulated by 15 random locations. Of these, 65 are
selected after removing repetitions. Here the region of interest
was the mannequin. We use these pattern sets to reconstruct
the range image, and compare to randomly choosing the
same number of patterns. Qualitatively, the selected patterns
often illuminated parts of the objects which were poorly
reconstructed, as expected. As we show in Figure 8, we
get significantly more accurate reconstruction compared to
random selection—18.9mm RMS, compared to 24.1mm RMS
for the hand example, and 51.3mm compared to 59.1mm in
the mannequin example. This demonstrates the usefulness of
our selection criteria when judged by reconstruction accuracy.

Finally, in order to demonstrate that greedy selection im-
proves reconstruction, on average, per pattern selection, we
perform ten greedy selection steps, selecting a single pattern
out of ten randomly drawn ones, and demonstrate the resulting
reconstruction. We take striped gray-code patterns modulated
by radially-decreasing piece-wise smooth masks, centered at
various locations, for a total of 240 patterns. The results of
adding patterns at random vs. greedy selection show that even
when we do not yet have reasonable reconstruction, greedy
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Fig. 5. Left-to-right: a projected Gaussian-smoothed pattern, a captured image, average reconstruction error as a function of the number of patterns used.
Dashed lines mark the standard deviation over pattern sequences.

Fig. 6. Left-to-right: An indicator image of reflected patterns amplitudes, followed by the mutual information between the image and the range, for random
Gaussian-smoothed patterns. The initial patterns are dominated by well-illuminated areas, followed by poorly-illuminated areas (a secondary trend relates to
the surface illumination angle).

Fig. 7. Left: Mutual information gain under different assumptions on the scene: Blue line - the standard case of large range and albedo uncertainty of
σr = 300mm, σa = 3, σb = 300. Red line - σa = 30, σb = 3000 (high uncertainty of the appearance). Green line - σa = 0.3, σb = 20 (strong prior
on the appearance). Cyan line - σr = 7mm (low initial uncertainty of the range). Given a good prior on the nuisance parameters of the albedo, range is
estimated more quickly in terms of frames. Given a strong range prior, the region does not require as many patterns for estimation, and overall MI gain is
smaller. Right: Blue - information gain for a set of different patterns. Green - where only half of the patterns are shown, but they are repeated twice. The
information gain is much lower in the second case.
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Hand Mannequin
Mean MI, STDev, Mean MI, STDev Mean MI, STDev, Mean MI, STDev

Greedy Greedy Random Random Greedy Greedy Random Random
Step 1 0.4168 0.2820 0.1267 0.0957 0.1688 0.0561 0.0756 0.0504
Step 2 0.7904 0.2803 0.3263 0.2457 0.2404 0.0694 0.0653 0.0484
Step 3 0.8129 0.1820 0.2686 0.1694 0.3030 0.0916 0.1199 0.0695
Step 4 0.6232 0.1125 0.2125 0.1591 0.2911 0.0806 0.0997 0.0939
Step 5 0.1562 0.0995 0.0903 0.1317 0.1334 0.0450 0.0744 0.0656
Step 6 0.0229 0.0264 0.0376 0.0433 0.0400 0.0232 0.0482 0.0486

TABLE I
MI GAIN STARTING FROM TWO RANDOM PATTERNS, WHEN USING GREEDY SELECTION, COMPARED TO RANDOM PATTERN SELECTION. RESULTING MI

GAINS ARE SHOWN FOR THE HAND AND MANNEQUIN EXAMPLES FROM FIGURE 8. OUR MI-GREEDY APPROACH OBTAINS A LARGER INFORMATION
GAIN, AND DOES SO FASTER (IN FRAME COUNTS) THAN A RANDOM ORDERING OF FRAMES.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Left-to-right: camera image with a projected pattern on the marked object (red overlay marks the mask used for MI integration). The area covered by
the mask received significantly more pattern coverage and the reconstruction with these bands is considerably better than random selection. Top: reconstruction
with a random set of 69 bands (range RMS=24.1mm) vs. reconstruction with the set of 69 bands selected by a greedy selection (range RMS=18.9mm). Bottom:
reconstruction with a random set of 65 blobs (range RMS=59.1mm) - random vs. greedy.

selection according to MI improved L2 reconstruction error.
Despite the fact the L2 reconstruction error does not directly
coincide with MI, we show that computing MI gain according
to our model results early on in the reconstruction sequence
in improved reconstruction results, as shown in Figure 9. For
example, the depth reconstruction error obtained by 10 random
patterns is obtained with less than six patterns in the greedy
case, representing a 40% speedup.

B. Pattern Choice for Pose Estimation

In Figures 10–13 we show computed per-pixel MI between
a new camera image and the pose, assuming a highly cer-
tain range image, as estimated by Algorithm 3. We start in
Figure 10 with a synthetic case where the results are easy
to interpret, with a scene made of a single large corner.
The pattern set for this experiement is the standard gray-
code striped patterns, shown in the first row. We assume only

translational uncertainty; we leave reasoning about the full
SE(3) pose space to future work as it is less instructive. We
use stripes going from coarse to fine, stopping at a pattern of
four pixels stripe width in the projector image plane. At this
phase, the appearance coefficients A,G are well estimated.
In this example the camera and the projector are facing the z
direction, and in front of them there is a large smoothed corner.
We compare a case of uncertainty in the xy plane, to that of
uncertainty in the z plane in terms of the pixel-wise MI gain.
The large sloped corner and the edges are the main source
of uncertainty reduction in xy since the rest of the scene is
planar. In the z uncertain case, the full image is informative
to the same extent. The intermediate case is a mix between
the two, as expected.

For pattern selection, in Figure 11 we demonstrate pattern
choice according to the proposed criteria for choosing patterns
in a structured-light scanner. This shows that for an unknown
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(a) (b) (c) (d)

Fig. 9. Top, Left-to-right: camera image with a projected pattern on the marked object (MI integration mask shown in red), range image of the scene as
reconstructed by random selection of 10 patterns, greedy selection of 10 patterns and the full set of 240 patterns, reconstruction squared error as a function of
the number of patterns addded, averaged over 20 trials. Bottom: error between partial frame sets reconstruction and the full 240 frames reconstruction, where
frames are added at random (green) or using our approach (blue). Greedy selection based on our model improves reconstruction results with significantly
fewer frames (50%), as demonstrated by Subfigures (b) and (c).

pose information can be obtained from edges and corners;
given a reasonable model of the scene, we can use mutual
information to suggest which pattern to use to project only
informative parts of the scene. The patterns chosen consist
of a striped pattern projected only along a partial band of
the projector screen. Figure 12 demostrates a different set of
patterns, of stripes modulated by a Gaussian mask, allowing
to focus a pattern in a small region, which is important in
practical applications. As can be seen, the top-ranking patterns
are those that illuminate edges in the scene, which should
give us high uncertainty reduction. MI for pose estimation
can also be seen with real scenes. In Figure 13 we show
pixelwise pose estimate for Gaussian smoothed patterns. The
most informative pixels are edges and sloped areas, where the

perceived projector intensity changes rapidly as a function of
the pose.

V. CONCLUSIONS

In this paper we present a novel information-driven ap-
proach to planning into 3D sensors at the sensor level. We
demonstrate how different uncertainty estimates and sensor
models lead to different criteria for pattern selection. Future
work includes the completion of a prototype scanner based
on the proposed approaches. This decision-theoretic approach
where action choice is identified with pattern selection in
structured-light easily extends to other reconstruction tech-
niques such as depth-from-focus (see for example [47]) and
time-of-flight [48], [49]. We intend to explore these in future
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Fig. 10. Per-pixel information gain for the case of initial uncertain scanner position. Left-to-right, top row: a set of patterns used for 3D sensing for pose
estimation. Middle row: a rendering of the scene with sensor pose samples (black dots) in 3 scenarios, and the fields of view of the projector and camera.
Bottom row: pixelwise mutual information estimates: with high uncertainty in the x-y plane of the scanner, uncertainty in x-y-z, and z-only uncertainty in
scanner position. Yellow and red marking high and low information gain, respectively. Surfaces at sharp angles to the projector and camera provide greater
uncertainty reduction in the x-y directions, whereas for uncertainty in the z axis, all surfaces are informative.

Fig. 11. Left: the depth image and the MI scores of vertical and horizonal stripe masks of the patterns with respect to pose estimation in the xy plane.
Right: the top-scoring horizontal and vertical patterns, as seen when projected onto the scene. As can be seen, the patterns that were selected are the ones
illuminating the edges and corner.
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Fig. 12. Left-to-right, top row: the top 3 selected masks from a set of 60 masks, and the range image. Bottom row: a MAP estimated images for the 3 masks,
used when estimating the MI for each pattern, followed by the average MI scores for the patterns. Red circles mark the patterns shown.

Fig. 13. Left-to-right, top row: an image of the scene, one of the projected patterns as capture, the range image, the pixelwise mutual information with respect
to the pose, which initial uncertainty in the camera’s xy plane. The main informative areas are the cones, and regions that face the x, y directions.

work. While we show several standard pattern libraries in the
results section, selecting the optimal library is not the focus of
this paper, even though it heavily interacts with the problem
we address. Indeed, many of the libraries are designed so that
a complete scanning cycle is efficient and effective. However,
once we look at the online pattern selection problem given a
changing scene, other patterns may be relevant. Exploration of
the interaction between different nuisance factors in the online
case, and the efficiency gap between a fixed-order scanning
plans and adaptive plans, or the complementarity of different
pattern sets in dynamic scenes is left for future work.
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