
A Robust Approach to Sequential Information Theoretic Planning

Sue Zheng 1 Jason Pacheco 1 John W. Fisher, III 1

Abstract

In many sequential planning applications a nat-
ural approach to generating high quality plans is
to maximize an information reward such as mu-
tual information (MI). Unfortunately, MI lacks
a closed form in all but trivial models, and so
must be estimated. In applications where the cost
of plan execution is expensive, one desires plan-
ning estimates which admit theoretical guaran-
tees. Through the use of robust M-estimators in
the planning phase we obtain bounds on absolute
deviation of estimated MI. Moreover, we propose
a sequential algorithm which integrates inference
and planning by maximally reusing particles in
each stage. We validate the utility of using robust
estimators in the sequential approach on a Gaus-
sian Markov Random Field wherein information
measures have a closed form. Lastly, we demon-
strate the benefits of our integrated approach in
the context of sequential experiment design for
inferring causal regulatory networks from gene
expression levels. Our method shows improve-
ments over a recent method which selects inter-
vention experiments based on the same MI ob-
jective.

1. Introduction
In many applications of Bayesian inference one is faced
with the following challenges – (1) exact inference is in-
tractable, and (2) the cost of measurement far exceeds the
cost of inference. The former challenge is well studied,
however the latter so-called planning problem has received
comparatively little attention within machine learning. We
consider a formulation analogous to sequential Bayesian
experiment design, whereby observations lead to actions
that maximize a reward. Observations are chosen to max-
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imize information gain over some latent variables, known
as information theoretic planning.

The Bayesian perspective on information planning largely
arises from statistics with the classic work of Black-
well (1950), Lindley (1956) and later Bernardo (1979).
In these works, information rewards are considered to
quantify the expected reduction in posterior uncertainty
(Ali & Silvey, 1966). Subsequent analyses (Basseville,
1989; Bartlett et al., 2003; Nguyen et al., 2009) link
such measures to bounds on risk. More recently their
use has been considered for sensor planning (Ertin et al.,
2003; Kreucher et al., 2005; Williams et al., 2007), ex-
periment design (Drovandi et al., 2014), and active learn-
ing (MacKay, 1992; Settles, 2012).

When performing closed-loop planning over T -stages,
where observed values for an action are incorporated before
choosing the next action, the policy with highest expected
reward can be determined using a dynamic programming
approach (Bertsekas, 1995) which leverages backwards re-
cursion to reduce computational complexity. This ap-
proach has exponential complexity in planning horizon T
and combinatorial complexity in the number of action-
observation pairs. Consequently, tractable greedy heuris-
tics, which have computational complexity linear in the
number of actions and in the planning horizon, are often
applied instead.

While the greedy heuristic greatly reduces computation,
consideration must also be given to the cost of evaluating
the information reward. In many problems exact evalu-
ation of MI lacks a closed-form expression and so must
be estimated. Moreover, the ability to accurately esti-
mate rewards, and characterize estimation error, is cru-
cial to making high quality decisions. For this reason,
we propose a sample-based approach that employs M-
estimators (Catoni, 2012) to yield MI estimates that are
robust to outliers and facilitates both asymptotic and finite-
sample analysis of estimator properties. In a comprehen-
sive analysis we: formulate the estimator bias, establish
a central limit theorem and consistency, show probabilis-
tic bounds of estimator deviation for finite samples, and
present a probabilistic statement of plan quality. Finally, to
reduce sample complexity we extend our method to a prac-
tical sequential importance sampling, which reduces com-
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putation by reusing samples drawn during inference for ef-
ficient planning.

Combining these elements we demonstrate the proposed
approach for planning in two models. We first consider
measurement selection in a tree-structured Gaussian MRF.
The ability to perform exact posterior inference in this
model allows us to numerically validate properties of the
estimator with respect to non-robust empirical estimation.
Next we consider the inference of causal regulatory net-
works from gene expression data, a challenging problem
where exact inference is infeasible. We demonstrate that
our general method compares favorably to a recent base-
line (Cho et al., 2016), specifically designed for the current
application, and in particular shows large relative gains in
early planning stages.

2. Robust Information Planning
In the most basic form information planning sequentially
chooses actions that maximize information gain. In the
general case actions typically consist of measurement
choices or a combination of measurements and interven-
tions, as in the regulatory network example in Sec. 5. We
begin this section with a formulation of planning with the
mutual information reward, discuss its computational chal-
lenges, and present a robust estimation procedure for infor-
mation theoretic planning.

2.1. Information-Theoretic Planning

To simplify discussion we consider a model comprising
latent variables x and conditionally independent observa-
tions YT = {y1, . . . , yT }. At each time t a discrete ac-
tion at ∈ {1, . . . , A} parameterizes the likelihood, denoted
pat(yt | x). Given observations YT and actions AT =
{a1, . . . , aT } the posterior is:

p(x | YT ;AT ) ∝ p(x)

T∏
t=1

pat(yt | x) (1)

Planning can be performed in an open loop manner, entirely
offline, or closed loop where observations are incorporated
into the plan as they are observed (Williams, 2007). We fo-
cus on the more efficient closed loop greedy setting, where
actions are chosen sequentially and observed values are in-
corporated before choosing the next action. Specifically,
at stage t we choose the action to maximize the posterior
mutual information (MI):

a∗t = arg max
a

Ia(X;Yt | Yt−1) (2)

= arg max
a

Ha(Yt | Yt−1)−Ha(Yt | Xt,Yt−1)

whereHa(·) denotes differential entropy under the hypoth-
esized action a. MI can be expressed in other ways; we

choose the above form only for clarity. Similarly, our
choice of conditionally independent observations in the
joint Eqn. (1) is for simplification but is easily extended to
the case where nuisance variables must be integrated out.

2.2. Sample-Based Estimate of Information

The MI expression (2) typically lacks a closed form. In
particular, entropy requires a posterior expectation and the
marginal entropy H(Yt | Yt−1) requires evaluation of
the log-posterior predictive distribution log p(yt|Yt−1). At
time t we have posterior samples {xi, yit}Ni=1 ∼ pa(x, y |
Yt−1). We can estimate MI at each action a = 1, . . . , A
using the empirical plug-in estimator:

Îa =
1

N

N∑
i=1

log
pa(yit | x)

1
M

∑M
j=1 pa(yit | xij)

(3)

We draw independent samples {xij}Mj=1 ∼ p(x | Yt−1)

for each action and each observation sample yi to en-
sure estimates are independent. These estimates parallelize
across actions and marginal estimates (7) parallelize across
samples {yi}. However, naive empirical mean estimation
is sensitive to outliers, particularly in the small sample
regime (Catoni, 2012). In the next section we present a ro-
bust sample-based approach to information theoretic plan-
ning which avoids large estimator deviations and facilitates
theoretical analysis of estimator properties in subsequent
sections.

2.3. Robust Estimation of Mutual Information

We define a pair of M-estimators of the posterior moments
in Eqn. (2). The class of M-estimators (Huber, 2011) is
characterized by the extrema of an influence function which
modulates the impact of outlier samples. We use the M-
estimator due to (Catoni, 2012) as it was developed to
challenge empirical estimation in the finite sample setting.
Given a collection of i.i.d. samples {θi}Ni=1 the estima-
tor θ̂ ≈ E[θ] is given by the solution to the root equation∑N
i=1 ψ

(
α(θi − θ̂)

)
= 0 where,

ψ(x) =

{
log(1 + x+ x2/2), x ≥ 0

− log(1− x+ x2/2), x < 0.
(4)

Here α is a free parameter controlling sensitivity to outlier
samples. The function ψ(x) is monotonically increasing in
x and has a unique root, thus making root finding efficient
with standard methods.

At time t we estimate MI for each potential action
using posterior samples {xi, yi}Ni=1 ∼ pat(x, yt | Yt−1).
Given an estimate of the posterior predictive distribution,
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p̂iat ≈ pat(y
i | Yt−1) the M-estimate of MI is:

θi = log
pat(y

i | x)

p̂iat
, for i = 1, . . . , N (5)

Îat ⇔
N∑
i=1

ψ(α(θi − Îat)) = 0 (6)

Here we use a plug-in M-estimate of the posterior predic-
tive distribution. As before we ensure that estimators are
independent via M iid posterior samples. Our estimate of
the posterior predictive is then:

θij = pat(y
i
t | xij), j = 1, . . . ,M (7)

p̂iat ⇔
M∑
j=1

ψ(α(θij − p̂iat)) = 0 (8)

For planning we select the action a∗t = arg maxa Îa maxi-
mizing MI. By exploiting properties of the M-estimator we
are able to characterize both asymptotic and finite-sample
behavior, which we address next.

3. Estimator Properties
Beginning with an asymptotic analysis we ensure the esti-
mator is consistent and Gaussian distributed in the infinite
sample limit. Despite being consistent we establish a bias
for finite samples and show the rate of bias decay. While
asymptotic analysis is desireable, our primary interest lies
in understanding finite sample behavior and the tradeoffs
with sample size. For the finite sample regime we establish
probabilistic bounds on absolute estimation error and char-
acterize the role of estimator bias. Importantly, we con-
clude with by formulating the probability of selecting an
optimal action in a single time instance.

Bias arises in both empirical and robust estimators from
the marginal entropy. More generally, an unbiased plug-in
estimator of p(y) will give rise to a biased estimate of the
log p(y). We begin by establishing a bias decay rate using
a Taylor expansion of the estimator mean:

Proposition 1. Let χ2(p(x)||q(x)) denote the chi-square
divergence of p from q. The bias of the empirical estimator
depends on N,M as follows:

E[ÎNM ]− I =
χ2(p(y, x)||p(y)p(x))

2M
+O(M−2).

M-estimators obey consistency and asymptotic normal-
ity under fairly mild assumptions placed on the influence
function (continuity, monotonicity, and the existence of a
unique root), for a nice summary see (DasGupta, 2008).
Having established the rate of bias decay we conclude that
M = ω(

√
N) avoids systematic bias in the limiting distri-

bution, leading to a consistent estimator:

Proposition 2. Let {xi, yi}Ni=1 ∼ p(x, y | Y) and for each
yi let {xij}Mj=1 ∼ p(x | Y) be independent samples. As
N → ∞ and M = ω(

√
N), the estimator ÎNM is asymp-

totically normal and consistent:
√
N(ÎNM − I)→ N (0, σ2

Î
)

with variance σ2
Î

= σ2
(

log p(y|x)
p(y|Y)

)
.

We have chosen, as a matter of convenience, to set the free
parameter α =

√
2/(Nσ2), and similarly for the posterior

predictive estimator. In this way α → 0 as sample size
increases and the robust estimator converges to the same
limiting distribution as the empirical mean. It is possible
that the limiting distribution under robust estimation has
tighter variance, but we did not analyze this as our interest
lies in the finite sample regime.

Following the analysis of (Catoni, 2012) we establish prob-
abilistic bounds on the deviation of the robust and empiri-
cal estimators for finite samples. Unlike in the general set-
ting considered by Catoni, the existence of estimator bias
(Prop. 1) leads to systematic overestimates of the mutual
information. For any confidence level ε > 0 we have that
with probability at least 1−2ε the absolute error is bounded
as follows:

Proposition 3. Let N > 2 + 2 log(ε−1) and denote the
posterior predictive estimator as p̂(y;x) to make explicit
its dependence on the samples x , {xj}Mj=1. Then with
probability p ≥ 1− 2ε,

b− c ≤ ÎNM − I ≤ b+ c

where, c =


2(1+log ε−1)

√
σ2
ÎNM
2N

1+
√

1−2(1+log ε−1)/N
, Robust

√
σ2
ÎNM

2Nε , Empirical

,

and σ2
ÎNM

= σ2(log p(y|x)
p̂(y;x) ) is the sample variance and

b = Ex[KL(p(y)||p̂(y;x))] the estimator bias.

With high probability, the deviation is bounded in the in-
terval [−c, c] that is then shifted by b. While the bias takes
identical form under both estimators, it is an expected devi-
ation, so the value of bias will differ depending on the qual-
ity of the posterior predictive estimate. As M → ∞ this
bias vanishes and the deviation becomes symmetric about
the true value of MI.

Evaluating the true value of MI is useful for quantifying
reward, and is complicated due to bias, but it is not the
primary goal of planning. Indeed, the value of information
is secondary to the primary focus of choosing the correct
maximizing action, or more broadly the correct ordering of
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actions. The later goal can be accomplished in the presence
of bias. In fact, the probability that the correct action is
selected can be expressed as follows:
Proposition 4. Without loss of generality, let I1 ≥ I2 ≥
. . . ≥ IA. For N � 1,

P(a∗ = 1) ≈
∫ +∞

−∞
N (Î1; I1, σ

2
1)

A∏
a=2

Φ

(
Î1 − Ia
σa

)
dÎ1

where σ2
a = 1

N σ
2
(

log pa(y|x)
pa(y|Y)

)
and Φ(·) is the cumulative

distribution function of the standard normal distribution.

The probability in Prop. 4 is not observable but does con-
firm an intuitive trade-off between estimator quality and in-
formation gain which is illustrated in Fig. 1. The CDF
factors indicate that low quality estimates suffice when the
actual information of the ath action differs significantly
from the estimate, for example where (Î1 − Ia)/σa is
large. Yet, when information gain is similar across ac-
tions, (Î1 − Ia)/σa small, suboptimal decisions incur little
penalty due to similar information rewards across actions.
It is in the intermediate regime, where information rewards
differ moderately, that estimator quality translates to higher
information gain.

Figure 1. Asymptotic Ranking. Left: Probability of correct rank-
ing according to Prop. 4. We vary I2 from I3 to I1 where
I1, I3, I4, I5 = 6, 3, 2, 1 respectively. As I2 approaches I1, the
probability of selecting the correct optimizer P(a∗ = 1), which
depends on

(
I1−I2
σ

)
, drops as there is increasing chance of select-

ing a∗ = 2. Right: Expected information gain. While the prob-
ability of selecting the correct maximizer decreases as I2 → I1,
these actions have increasingly similar IG and the net reduction in
expected IG for choosing the incorrect optimizer is small.

4. Sequential Inference and Planning
The algorithm described in Sec. 2 requires N posterior
samples at each stage t and for each action 1, . . . , A an
additional M posterior samples are needed. Sample com-
plexity is thus on the order O(TNAM). As a practical
alternative we propose a sequential importance sampling
approach which encourages sample reuse thereby reducing
computation.

Our sequential algorithm is depicted in Fig. 2 and is moti-
vated by sequential importance sampling for static models
introduced by Chopin (2002); a special case of resample-
and-move for dynamical systems (Gilks & Berzuini, 2001).

Drovandi et al. (2014) propose a similar approach for ex-
perimental design in model selection, though they only
consider discrete observations and rely on the standard SIS
estimate of the model evidence.

M-Estimator The estimator presented in Sec. 2.3 can be
extended to importance weighted samples {θi, wi}Ni=1 by
observing the importance weighted expectation is E[θ] ≈
1/N

∑
iNw

iθi. The importance weighted M-estimator is
then given by the root equation:

θ̂ ⇔
N∑
i=1

ψ(α(Nwiθi − θ̂)) = 0 (9)

When samples are drawn from the target distribution then
wi = 1/N and Eqn. (9) reduces to the unweighted M-
estimator.

Algorithm Summary At time t given samples {xi, wi}Ni=1

we begin by sampling measurements for each hypothesized
action a = 1, . . . , A:

{yit}Ni=1 ∼ pa(· | xi) (10)

As before we assume the measurement likelihood is easily
sampled. We next estimate the posterior predictive distri-
bution using an independent set ofM importance weighted
samples {xj , wj}Mj=1. For each measurement sample i =
1, . . . , N the posterior predictive estimate is,

p̂ia ⇔
M∑
j=1

ψ
(
α(Mwjpa(yit | xj)− p̂ia

)
= 0. (11)

The plug-in p̂ia ≈ pa(yit | Yt−1) value is used to estimate
mutual information at each hypothesized action:

Îa ⇔
N∑
i=1

ψ

(
α

(
Nwi log

pa(yit | xi)
p̂ia

− Îa
))

= 0 (12)

Next, select the maximally informative action a∗t =
arg maxa Îa and observe the corresponding model yt ∼
pat(y | x). Importance weights are updated via the likeli-
hood to incorporate the new observation:

w̃it = witpa∗t (yt | xi), wit =
w̃it∑
k w̃

k
t

(13)

Compute the effective sample size (ESS) as the reciprocal
sum of squared weights E = 1/

∑
i(w

i)2. If E ≥ τ , for
some fixed tolerance τ , then samples remain fixed, result-
ing in computational savings. Conversely, if E < τ then
posterior samples are moved via an MCMC kernel with
the posterior target distribution and we set uniform weights
wi = 1/N .

Our implementation maintains separate weights and per-
forms resampling independently for both sets of posterior
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Figure 2. Sequential Algorithm. Our algorithm performs closed-loop greedy planning by alternating inference and planning stages.
Planning: samples yi ∼ pa are drawn for each potential action a = 1, . . . , A, followed by robust importance-weighted MI estimates.
Note that planning estimates can be computed in parallel for all actions. Inference: After selecting action a∗ = argmaxa Îa an
observation is drawn from the corresponding model y ∼ pa∗(y | x). Importance weights are then updated and new posterior samples
are drawn if the ESS drops below a specified threshold τ . Numbers reference corresponding equations in the main text.

samples: those used to estimate the predictive distribution
{xj , wj}Mj=1 and for MI {xi, wi}Ni=1. We find that this ap-
proach leads to additional computational savings by avoid-
ing frequent resampling of the entire particle set when only
a subset of weights become degenerate.

5. Experimental Results
We analyze performance of the proposed algorithm in
two scenarios, beginning with a tree-structured Gaussian
MRF. Posterior inference can be performed exactly and ef-
ficiently under this model, allowing us to validate our the-
oretical claims from Sec. 3. We further demonstrate that
robust planning exhibits superior quality plans in the se-
quential setting, where deviation bounds to not explicitly
hold. Finally, we consider sequential experiment design
for gene regulatory network inference. Here, we demon-
strate superior estimation of regulatory network structure
prediction, with fewer interventions, compared to previous
work (Cho et al., 2016). The supplementary material also
contains a comparison to a related method for model selec-
tion (Drovandi et al., 2014).

5.1. Gaussian MRF Measurement Selection

Consider a tree-structured Gaussian MRF G = (E ,V) with
edges E , nodes V , and joint probability p(x, y) =∏
s∈V

N(ys | Casxs, σ2)
∏

(s,t)∈E

N
(
(xs, xt)

T | mst, Vst
)
.

Latent nodes xs are 2D Gaussian random variables and ob-
servations ys are scalar. The likelihood model at each node
is defined over a set of random linear projections with pa-
rameters {Ca}Aa=1. At each stage of information planning
the algorithm must choose the projection maximizing infor-

mation gain arg maxa Ia(Xs;Ys) at the current node in a
predetermined sequence. The node sequence is chosen ran-
domly a priori and only the current node in the sequence is
revealed to the planner.

In our experiments we generate random trees with |V| = 30
nodes, each node having A = 15 randomly generated can-
didate projection operators. We draw a random sequence
of T = 25 nodes to be observed, thus not all nodes receive
measurements and the set of available projections varies
with each stage. We compare performance of the sequential
robust algorithm against an empirical estimator and naive
random selection. Our results are summarized in Fig. 3.

Robust planning yields higher information gain. Com-
pared to empirical estimation, robust planning consistently
shows higher median information gain (IG). Fig. 3 (left)
shows median and quartile IG over 100 random trials with
M,N = 50 particles. By the final planning epoch quartiles
of cumulative information gain are nearly non-overlapping
for the two estimation methods. Overall, approximate in-
formation planning incurs a penalty of roughly 10% in real-
ized IG under this model. Unsurprisingly, random planning
incurs a much higher penalty. Moreover, the observed im-
provement remains as we vary sample size, Fig. 3 (center).

Less resampling yields more improvement. The accu-
racy of empirical planning degrades more rapidly than ro-
bust planning as the resampling threshold τ is reduced,
resulting in lower realized IG, Fig. 3 (right). By setting
α =

√
2/(Nσ2) in terms of the sample variance σ2 the

M-estimator better modulates the impact of outliers as im-
portance weights degrade.

Validation of deviation bound The deviation bound in
Prop. 3 is guaranteed to hold with probability at least 1−2ε
only for the Robust estimator with i.i.d. samples from the
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Figure 3. Gaussian Sequential Planning. Analysis of cumulative information gain (relative to optimal) for each planning algorithm.
Left: Median and quartiles (shaded) of cumulative IG for 100 random trials with 50 particles. The performance difference between
Robust and Empirical concentrates over iterations with nearly non-overlapping quartiles by the final iteration. Middle: Cumulative IG
at iteration 25 for various particle counts (limits are quartiles, whiskers extremal points, and + outliers). Both estimators yield higher
IG with additional particles yet improvements from using robust estimation persists across sample sizes. Right: Various resampling
thresholds τ . IG in the non-robust estimator degrades more rapidly as the frequency of resampling decreases.

Figure 4. Gaussian Estimator Deviations. Left-Top: Deviation
counts from 100K trials and M,N = 50 samples. Devia-
tion bounds are evaluated for a fixed MRF at confidence level
ε = 10−2 (Prop. 3) using 50M samples. Both estimators ex-
ceed the bounds at a rate less than 2ε, though empirical estimation
does so more often than robust. Left-Bottom: Distribution of ESS
at each iteration. Particles are resampled when ESS falls below
threshold (black line). Notably, the deviation bound is never vi-
olated in instances of frequent resampling (iterations 1 and 15).
Right: Empirical probability of deviations greater than the bound
in Prop. 3. When the ESS is high (iteration 1), both algorithms
perform similarly but when the ESS is low (iteration 5), Seq. Ro-
bust has lower probability of exceeding a specified deviation.

posterior. However, we verify this bound empirically for
the sequential algorithm by evaluating the proportion of
samples which exceed it at confidence level ε = 10−2. We
estimate the bound using 50M independent posterior sam-
ples and find the bias component b ∼ 0.01 is much less
than the deviation component c ∼ 0.6 of the bound. Both
algorithms violate the bound less frequently than 1−2ε sug-
gesting Prop. 3 is conservative. Results are summarized in
Fig. 4.

Empirical violates deviation bounds more frequently
While extreme deviations are rare under both estimators,
suggesting that Prop. 3 is a conservative bound, we see

that empirical estimation consistently violates the devia-
tion bound more frequently than M-estimator based plan-
ning, Fig. 4 (top-left). Moreover, low ESS values trigger
resampling, leading to less frequent estimator deviations as
Prop. 3 holds in this scenario. Fresh posterior samples are
always drawn on the first iteration and we do not observe
any bound violations over 100K trials as a result, Fig. 4
(top-left). Weights typically degenerate by iteration 15
causing most runs to draw new samples (Fig. 4 (bottom-
left)) and the deviation bound is never violated, Fig. 4
(top-left). Deviations of higher magnitude have outsized
probability under the empirical estimator when samples
are reused, but magnitudes are similar when particles are
freshly sampled, Fig. 4 (right).

5.2. Causal Gene Regulatory Networks

We switch focus to sequential Bayesian experiment design
for estimating causal networks of gene interaction. In this
setting we observe expression levels of interacting genes
but do not know the causal structure of interaction. Using
only network observations the underlying graph structure is
only identifiable up to Markov equivalence classes (Pearl,
2003). To recover causal relationships we perform knock-
out interventions in which a gene is removed from the net-
work by clamping its value to zero. The number of inter-
ventions that can be performed is limited due to cell degra-
dation; this motivates the use of an approach which cor-
rectly identifies the important interventions in the fewest
planning stages. Following (Cho et al., 2016) we model
the expression level of N genes, denoted X ∈ RN , as a
Gaussian Bayes network G,

G ∼ Uniform-DAG,
θj | G ∼ Normal-Inv-Gamma(αj , βj , µj ,Λj)

xj | xPa(j), θj , G ∼ N(mj + wTj xPa(j), σ
2
j ).
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Where Pa(j) = {p1, . . . , pd} are the parents of node j and
the network parameters θj = {mj , wjp1 , . . . , wjpd , σ

2
j }

describe gene interactions. At stage t let I denote the set of
past interventions and similarly let X be the set of past ex-
pression levels. An intervention I ∈ {∅, 1, . . . , N} clamps
node XI = 0 and has no effect for I = ∅. Given an inter-
vention, expression levels are simulated from distribution
given by the product of all non-clamped node likelihoods.
We choose intervention at stage t + 1 to maximize mutual
information,

It+1 = arg max
I

E
[
log

p(X | G,X ; I, I)

p(X | X ; I, I)

]
. (14)

Parameters θ can be explicitly marginalized out due to
the use of a conjugate prior, leaving a closed form for
the conditional likelihood p(X | G,X ; I, I). However,
the data evidence in the denominator of the MI objec-
tive Eqn. 14 is intractable as it requires a marginalization
over graph structures–a super-exponential operation (Sira-
cusa & Fisher III, 2009; Friedman & Koller, 2003). We
estimate the evidence using a discriminance estimator and
similarly approximate MI with a robust M-estimator.

In Fig. 5 we compare our approach to the active planning
approach of (Cho et al., 2016) on the same model. We
achieve significantly better performance in early iterations
on all three criteria - MSE, area under precision recall curve
(AUPRC), and area under receiver operating characteristic
curve (AUROC). With more iterations, all methods, includ-
ing random, perform comparably as all collect sufficiently
many varied interventions to arrive at similar graph pos-
teriors with additional interventions yielding little perfor-
mance gain. The Sequential Robust approach is especially
compatible with this setup as it naturally resamples graphs
at initial iterations when good posterior samples are criti-
cal and the posterior is changing rapidly between iterations
and saves computation at less critical later stages.

To develop some understanding about the selection process
for this particular application, we show the intervention
chosen by each algorithm under 50 trials over 20 iterations
and the true graph with edge weights in Fig. 6. We note a
strong dependence between the intervention sequence with
the magnitude of the mean of each node in Fig. 6; e.g. Ro-
bust tends to select 6 first, followed by 4, 1, and 9. The
intuition behind this is as follows: knocking out a normally
highly expressive gene induces large changes in expression
levels of any children nodes provided that there is a strong
edge weight. Similarly, nodes 2, 3, and 8 have means near
zero and are rarely selected since observations from clamp-
ing such a node would be close to observations when no
nodes are clamped.

Comparing the selection differences between the two al-
gorithms, we observe that our method consistently chooses
the same initial interventions whereas the method of Cho et

al. exhibits much more variability across the 50 trials. Lit-
tle is known about the graph structure in the early stages
and choosing the optimal intervention can yield signifi-
cantly greater performance gains over others; this is seen
in the rightmost plot which shows average realized per-
formance gain of each candidate intervention in the first
iteration. Our method consistently selects I = 6, which
yields twice the performance gain of the next best choice
whereas Cho et al’s method chooses I ∈ {1, 4, 9} and of-
ten waits until t = 4 to clamp node 6. MSE drops signif-
icantly immediately after incorporation of the observation
from clamping node 6, seen in Fig. 5 for our method at
t = 2 and for Cho et al. at t = 5.

The concentration of the graph posterior with increasing
interventions is further illustrated in Fig. 7. Edge probabil-
ities were calculated from 100 graph samples across 50 tri-
als; probabilities≤ 0.4 were filtered to declutter the graphs.
The edge threshold was set based on the edge probabilities
from the graph prior which take values ∼ 0.3; deviations
from that level reflect changes in the graph distribution.
The edge probabilities change drastically following the ini-
tial interventions while little change is seen from the last
10 interventions. Using the same number of interventions,
our method is able to fill in more of the graph structure.
In the regime where interventions are especially costly, our
method would be able to achieve the same performance us-
ing much fewer interventions.

6. Conclusion
We have presented and analyzed a robust sample-based ap-
proach to information based planning. In our analysis we
have characterized both asymptotic and finite-sample be-
havior, thereby providing assurances of estimator quality
and, consequently, guarantees on the correctness of action
choices for sequential planning. Our extension to sequen-
tial importance sampling not only reduces sample complex-
ity, but is motivated by our analysis of the robust estimator.
Indeed, as importance samples degrade they tend to fail in
the tails of the target distribution, where we expect the ro-
bust estimator to outperform the empirical.

On tractable Gaussian MRF models we observe consistent
benefits of robust planning over empirical. Moreover, ro-
bust planning is more resilient to reduced sampling rates.
On the more challenging problem of estimating gene inter-
actions, our approach outperforms that of (Cho et al., 2016)
when optimizing identical MI reward. This finding is de-
spite the previous method being targeted to the application
in question. The performance difference is greatest at early
iterations which is when the benefits of planning are often
greatest.
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Figure 5. Regulatory network inference evaluation. Sequential Robust approach shows more rapid improvement in MSE of estimated
edge weights (left), edge prediction AUPRC (center-left) and ROC (center-right) compared to (Cho et al., 2016). Plots show median
(solid) and best/worst (dashed) runs out of 50 random trials. Sequential Robust frequently resamples graphs at early iterations when
obtaining good posterior samples is critical and saves computation at later stages when information gain is negligeable (right).

Figure 6. Regulatory network planning. The true network structure shows edges labeled by weights wij (left). The magnitude of the
node mean in true network in the absence of any intervention (center-left) correlates strongly with selection sequence by Robust (center)
since zeroing the expression level of a highly expressive gene is expected to induce large changes. Interventions chosen under Robust
and Cho et al(center-right) from 50 trials. At early iterations Robust selects interventions consistently across trials whereas Cho et al’s
method exhibits greater variability in the selection process. In both, greater variance is seen at later iterations when the optimal choice
diverges across trials due to differences in selection history and in realized observations. The average performance gain realized after
performing the specified intervention at t = 1 (right) indicates that clamping node 6 is by far the optimal choice.

Figure 7. Edge probabilities. Top-Left: Edge structure of true graph. Bottom-Left: Graph prior. Top Row: Sequential Robust. Bottom
Row: Cho et al. Edge probabilities ≥ 0.4 indicated by arrow thickness were calculated from 100 graph samples across 50 trials.
Graph prior has no edge probabilities above the threshold. First five interventions identify many edges with strong weights; next five
interventions refine the graph posterior by identifying additional edges; last 10 interventions do little to update the graph posterior.
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